Experimental Research on Water-Cut Detection of Oil-Water Mixture Based on Microwave Method

Author(s):  
Guozhong Wu ◽  
Jiadong Sun ◽  
Qi Hanbing ◽  
Li Dong
Author(s):  
Ang Li ◽  
Jianfeng Bai ◽  
Yun Shen ◽  
Hang Jin ◽  
Wei Wang ◽  
...  

The three-phase separator has a wide range of applications in oil production industry. For the purpose of studying the effect of heating temperature, demulsifiers and water content on the separation of oil-water mixture in the three-phase separator, eight kinds of oil samples were taken from different oil transfer stations in Changqing Oilfield and the mixtures were prepared by stirring method. To simulate the two-stage dehydration process, the first stage dehydration experiments without any heating were performed on mixtures at the dose of 100ppm demulsifer at 20°C, and the water cut of these mixtures is the same as that of the gathering pipeline in each oil transfer station. The water cut of the upper crude oil was measured after 40 minutes, and the values of them ranged from 0.5 vol% to 65.2 vol%. No visual stratification was observed for the sample most difficult to separate, so it was selected to conduct the second stage dewatering process. Three bottles of the same mixture were prepared and heated to 30°C, 40°C and 50°C, respectively. The results showed that all of them stratified in 10 minutes, and the water-cut values of the upper oil layer were 1.4 vol%, 0.5 vol% and 0.3 vol%, respectively, compared to 65.2 vol% at 20°C. When the concentration of demulsifier was changed to 200ppm and 300ppm, the results exhibited almost no differences. So it is deduced that the further improvement of heating temperature and demulsifier dose have limited enhancement on oil-water separation. At Last, 35 vol%, 50 vol%, 70 vol% and 85 vol% water cut mixtures of the special oil sample were made to experiment as previously. In consequence, the 35 vol% water-cut emulsions presented a relatively slow rate of oil-water stratification at low heating temperature, and the oil content of the lower separated water was improved by the addition of demulsifier dosage above 100ppm when the water cut was 90 vol%. It is indicated that high heating temperature is necessarry for low water-cut mixtures oil-water separation and can be appropriately reduced to save energy consumption as the water cut continues to rise. The demulsifier dosage is also neccessary be controlled in high water cut period. These experimental data provide the basis for the further optimization operation of the three-phase separator.


2020 ◽  
Author(s):  
Guishan Ren ◽  
Dangke Ge ◽  
Kai Sun ◽  
Xuemei Chen ◽  
Lifei Mi ◽  
...  

2013 ◽  
Vol 341-342 ◽  
pp. 534-539
Author(s):  
Guo Xing Zheng

When the oilfield enters the hing water cut stage, the mining faces the problem that the oil-gas gathering system energy consumption reduction needs to decrease produced water and water injection. This paper proposes a novel multi-cup uniform flow gravity sedimentation single well injection-production technique. The downhole oil-water separator separates oil from water. The separated water is directly reinjected into the injection layer. Higher oil content of oil-water mixture is lifted up to the ground. The water injection and oil production in the production wellbore are simultaneous. This paper also designs a crown-like sedimentation cup structure. The experiment shows that the optimum structure of crown oil-water separator is cylindrical with 30 inclination, 12 edges and one partition baord on the tip at the bottom of corrugated shape. Produced liquid contains water 95 percent; efficiency can be increased more than three times by using multi-cup uniform flow gravity sedimentation separator.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 145-153 ◽  
Author(s):  
Chengua Yu ◽  
Feng Wang ◽  
Shiyu Fu ◽  
Lucian Lucia

A very low-density oil-absorbing hydrophobic material was fabricated from cellulose nanofiber aerogels–coated silane substances. Nanocellulose aerogels (NCA) superabsorbents were prepared by freeze drying cellulose nanofibril dispersions at 0.2%, 0.5%, 0.8%, 1.0%, and 1.5% w/w. The NCA were hydrophobically modified with methyltrimethoxysilane. The surface morphology and wettability were characterized by scanning electron microscopy and static contact angle. The aerogels displayed an ultralow density (2.0–16.7 mg·cm-3), high porosity (99.9%–98.9%), and superhydrophobicity as evidenced by the contact angle of ~150° that enabled the aerogels to effectively absorb oil from an oil/water mixture. The absorption capacities of hydrophobic nanocellulose aerogels for waste engine oil and olive oil could be up to 140 g·g-1 and 179.1 g·g-1, respectively.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yuanli Chen ◽  
Hui Fan ◽  
Xinlin Zha ◽  
Wenwen Wang ◽  
Yi Wu ◽  
...  

AbstractHigh efficiency and anti-pollution oil/water separation membrane has been widely explored and researched. There are a large number of hydroxyl groups on the surface of silica, which has good wettability and can be used for oil-water separation membranes. Hydrophilic silica nanostructures with different morphologies were synthesized by changing templates and contents of trimethylbenzene (TMB). Here, silica nanospheres with radical pores, hollow silica nanospheres and worm-like silica nanotubes were separately sprayed on the PVA-co-PE nanofiber membrane (PM). The abundance of hydroxyl groups and porous structures on PM surfaces enabled the absorption of silica nanospheres through hydrogen bonds. Compared with different silica nanostructures, it was found that the silica/PM exhibited excellent super-hydrophilicity in air and underwater “oil-hating” properties. The PM was mass-produced in our lab through melt-extrusion-phase-separation technique. Therefore, the obtained membranes not only have excellent underwater superoleophobicity but also have a low-cost production. The prepared silica/PM composites were used to separate n-hexane/water, silicone oil/water and peanut oil water mixtures via filtration. As a result, they all exhibited efficient separation of oil/water mixture through gravity-driven filtration.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 457
Author(s):  
Chunlei Ren ◽  
Wufeng Chen ◽  
Chusheng Chen ◽  
Louis Winnubst ◽  
Lifeng Yan

Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.


2021 ◽  
Author(s):  
Chuan Yu ◽  
Qinghai Yang ◽  
Songbo Wei ◽  
Ming Li ◽  
Tao Fu

Abstract Single-layer water cut measurement is of great significance for identifying and shutting off the unwanted water, analyzing oil remained and optimizing production. Currently, however, only the water cut of multilayer mixture can be measured by testing samples taken from wellhead, a way which is widely used in oilfields. That of single-layer fluid cannot be determined yet To address the problem, this paper puts forward a new impedance sensor that offers long-term online monitoring of single-layer water cut. This sensor is based on the different electrical conductivity of oil and water. It has two layers. The inner one contains three electrodes - two at both sides sending sinusoidal excitation signals and one at the middle receiving signals that have been attenuated by the water-oil medium. With the Maxwell's model of oil-water mixed fluid, the receiver then can measure the water cut online. The outer layer of the sensor is made of PEEK, an insulative protection. In front of the electrodes lies a static mixer which makes the measurement more accurate by fully blending the two media when they flow through the electrodes. Laboratory tests are carried out with the prototype of the sensor at various oil-water mixing ratios, fluid flow rates, and temperatures. Results show that the average margin of error is within ± 3%. Higher accuracy is seen when high water cut and flow rate enable oil globules to disperse more evenly and the space in between to get wider and the RMS error is less than 2%. If the water cut drops below 80%, the aggregation of the droplets will cause wild fluctuation and more errors in the measurement. In addition, the mineralization of the mixture directly changes its conductivity, which largely impacts the result. Meanwhile, temperature can influence the ionic movement intensity and then alter the conductivity of the medium. Therefore, in practice, the sensor calibration needs to be performed according to the range of medium salinity, and the temperature of the medium is collected in real time for temperature compensation. It is shown that after the adjustment, the water cut measurement results have higher accuracy and consistency. The impedance sensor can realize online water cut monitoring for a single-layer, indicated by tests. It is more suitable for the increasing high water cut oilfields in that it is more accurate as the water cut grows.


Sign in / Sign up

Export Citation Format

Share Document