Profile Distribution Characteristics of Total Nitrogen and Soil Organic Matter in Different Types of Land Use in Baiyangdian Lake

Author(s):  
Yong-Tao Zhang ◽  
Bao-Shan Cui ◽  
Yan Lan ◽  
Zhen Han ◽  
Ting-Ting Wang ◽  
...  
2020 ◽  
Author(s):  
Liqun Tang ◽  
Zhijie Shan ◽  
Yang Yu

<p>Re-vegetation has been widely carried out to prevent land degradation, reduce soil erosion, and improve soil quality. In order to investigate the characteristics of soil nutrients content in different land use types of karst gabin basin, soil organic matter, soil total nitrogen, soil total phosphorus, soil total potassium, soil pH, and soil texture in woodland, agricultural land, orchard, and grassland were surveyed in Mengzi Gabin Basin, Southwest of China. The difference of soil indicators between vegetation types was analyzed, and soil fertility quality of four land use types was comprehensively evaluated by the soil quality index (SQI). The results showed that land use significantly affected soil organic matter content. Soil organic matter content was the highest in grassland, followed by agricultural land and forest land, while orchard was lowest. There was a significant difference in soil total nitrogen content between different land uses. The total nitrogen content in farmland soil was the highest, followed by grassland and woodland, and the lowest in the orchard. Woodand had the highest total potassium content and the lowest total phosphorus content. The grassland soil had the highest total phosphorus content and the lowest total potassium content. pH value in the four land use types was acidic, ranged from 5.82 to 6.67. The soil quality index showed that woodland had the highest soil fertility quality. The results of the study could provide the basis of soil nutrients variation and status in Gabin basin, and also provides support for evaluating the soil improvements during vegetation restoration in fragile Karst ecosystems.</p>


2016 ◽  
Vol 29 (2) ◽  
pp. 263-273 ◽  
Author(s):  
MARCELO RIBEIRO VILELA PRADO ◽  
FABRICIO TOMAZ RAMOS ◽  
OSCARLINA LÚCIA DOS SANTOS WEBER ◽  
CAIO BATISTA MÜLLER

ABSTRACT: The evaluation of land use and management by the measurement of soil organic matter and its fractions has gained attention since it helps in the understanding of the dynamics of their contribution to soil productivity, especially in tropical environments. This study was conducted in the municipality of Colorado do Oeste, state of Rondônia, Brazil and its aim was to determinethe quantity of organic carbon and total nitrogen in the light and heavy fractions of organic matter in the surface layers of a typic hapludalf under different land use systems: Native Forest: open evergreen forest, reference environment; Agroforestry System 1: teak (Tectona grandis LF) and kudzu (Pueraria montana); Agroforestry System 2: coffee (Coffea canephora), marandu palisade grass (Brachiaria brizantha cv. Marandu), "pinho cuiabano" (Parkia multijuga), teak and kudzu.; Agroforestry System 3: teak and cocoa (Theobroma cacao); Silvopasture System: teak, cocoa and marandu palisade grass; and Extensive Grazing System: marandu palisade grass. The experimental design was a randomized block in split-split plots (use systems versus soil layers of 0-0.05 and 0.05-0.10 m) with three replications. The results showed that relative to Native Forest, the Agroforestry System 2 had equal- and greater amounts of organic carbon and total nitrogen respectively (light and heavy fractions) in the soil organic matter, with the light fraction being responsible for storage of approximately 45% and 70% of the organic carbon and total nitrogen, respectively. Therefore, the light densimetric fraction proved to be useful in the early identification of the general decline of the soil organic matter in the land use systems evaluated.


2017 ◽  
pp. 55-66
Author(s):  
Jessa May Malanguis ◽  
Cheryl Batistel ◽  
Marlito Jose Bande

Land use conversion affects soil ecosystem quality and balance, which can be reflected by microbial activities. This study was conducted to assess the effectiveness of microbial respiration as indicator of soil quality of different land uses, reforestation site, agricultural land and grassland, in Cienda, Gabas, Baybay City, Leyte. The amount of CO2 evolved after one, three and seven days of incubation was used to determine microbial respiration rate of different land uses and across relief. Relationship between microbial respiration on pH, organic matter, total nitrogen, and moisture content at field capacity were also examined. Results revealed that microbial respiration varies significantly among land uses with the highest rate observed in grassland while the lowest was in the reforestation site. Across relief, amount of CO2 released was significantly higher in the lower slope compared to the upper and the middle. The process tends to be significantly influenced by soil organic matter and moisture content. Results suggest that there is an inverse relationship between microbial respiration and organic matter, and a direct relationship with moisture content. High soil respiration in the grassland and in the lower topographic relief implies that the soil organic matter is converted into inorganic forms which are available for uptake by plants. A significant interaction between land use types and relief was also observed in both organic matter and moisture content leading enhanced microbial respiration. Land use and relief showed no significant effect on total nitrogen and soil pH.


2015 ◽  
Vol 773-774 ◽  
pp. 1417-1421 ◽  
Author(s):  
Teong Ing Tong ◽  
Felix Ngee Leh Ling

In geotechnical field, peat soil is defined as soil which is formed by accumulation of purely one hundred percent organic matter and which the distinction between soil and vegetative accumulation is not clear. The main objectives of this review paper are to summarize and compare the geochemical properties of peat soil in different districts of Sarawak. Case studies that have been chosen covered central of Sarawak up to the North of Sarawak. Geochemical properties of peat soil that being observed are pH, total carbon, organic matter, bulk density and the total nitrogen. Geochemical properties are found to be governed by the types of material inside the soil and also strongly correlated with the engineering properties of soil. Notably showed that the types of organic matter, namely fibre and/or humidified organic inside the soil will influence the soil porosity. The findings of the studies showed that geochemical properties of the peat soil in different districts of Sarawak is site dependent and could be affected by the different land use or land activities. The differences in land use and land activities affected the bulk density, pH and types of organic matter in the soil. The result indicated that peat soil land in different district can categorized as acidic soil because of the pH range is between 3.3-3.75. For the bulk density, the lowest value is recorded at the Dalat sago plantation site, which is 0.14 g/cm3. For the value of the total carbon, peat soil from the Laogan Bunut National Park is the lowest, 47.6%. Furthermore, total carbon is related to the soil organic matter, coincidentally the value of soil organic matter in Miri found to be the lowest which is 74.59%. Result for the total nitrogen, there are little difference between the district. Range of the total nitrogen is from 0.9% to 2.4%, Sibu site is getting the lowest value in this case.


2021 ◽  
Author(s):  
Anna Schneider ◽  
Alexander Bonhage ◽  
Florian Hirsch ◽  
Alexandra Raab ◽  
Thomas Raab

<p>Human land use and occupation often lead to a high heterogeneity of soil stratigraphy and properties in landscapes within small, clearly delimited areas. Legacy effects of past land use also are also abundant in recent forest areas. Although such land use legacies can occur on considerable fractions of the soil surface, they are hardly considered in soil mapping and inventories. The heterogenous spatial distribution of land use legacy soils challenges the quantification of their impacts on the landscape scale. Relict charcoal hearths (RCH) are a widespread example for the long-lasting effect of historical land use on soil landscapes in forests of many European countries and also northeastern USA. Soils on RCH clearly differ from surrounding forest soils in their stratigraphy and properties, and are most prominently characterized by a technogenic substrate layer with high contents of charcoal. The properties of RCH soils have recently been studied for several regions, but their relevance on the landscape scale has hardly been quantified.</p><p>We analyse and discuss the distribution and ecological relevance of land use legacy soils across scales for RCH in the state of Brandenburg, Germany, with a focus on soil organic matter (SOM) stocks. Our analysis is based on a large-scale mapping of RCH from digital elevation models (DEM), combined with modelled SOM stocks in RCH soils. The distribution of RCH soils in the study region shows heterogeneity at different scales. The large-scale variation is related to the concentration of charcoal production to specific forest areas and the small-scale accumulation pattern is related to the irregular distribution of single RCH within the charcoal production fields. Considerable fractions of the surface area are covered by RCH soils in the major charcoal production areas within the study region. The results also show that RCH can significantly contribute to the soil organic matter stocks of forests, even for areas where they cover only a small fraction of the soil surface. The study highlights that considering land use legacy effects can be relevant for the results of soil mapping and inventories; and that prospecting and mapping land use legacies from DEM can contribute to improving such approaches.</p>


2018 ◽  
Vol 147 ◽  
pp. 1065-1072 ◽  
Author(s):  
Long-Ji Zhu ◽  
Yue Zhao ◽  
Yan-Ni Chen ◽  
Hong-Yang Cui ◽  
Yu-Quan Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document