Designing and research of a novel current limiting DC hybrid circuit breaker with the combinatorial electronic switch

Author(s):  
Huan Zheng ◽  
Hongyang Lin ◽  
Yi Du
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2388 ◽  
Author(s):  
Muhammad Ahmad ◽  
Zhixin Wang

The direct current circuit breakers are considered a promising option to protect the transmission line against commonly appearing line-to-ground fault. However, the challenges of losses in the nonoperational stage, escalation of response against fault current, and large fault current handling capability remain the debatable issues for direct current circuit breakers. This paper introduces a novel topology of the hybrid circuit breaker with fault-current-limiting characteristics, which contains three branches: the main branch, fault-current-limiting branch, and energy absorption branch. The main branch includes a mechanical switch, breaker impedance, and bidirectional power electronics switches. In the fault-current-limiting branch, a fault-current-limiting circuit is introduced which contains n numbers of bidirectional switches and current-limiting inductors, which are connected in series to make the design modular in nature. During the normal working stage, the current flows through the main branch of the breaker. Once a fault in the system is confirmed, the fault current is transferred to the fault-current-limiting branch. At this stage, the intensity of the fault current is reduced significantly using the fault-current-limiting circuit, and finally, the residual current is shifted to the energy absorption branch. The working principle, design considerations, and parametric analysis concerning the design of hybrid circuit breakers are incorporated in this paper. The performance of the proposed breaker is evaluated using a three-terminal voltage-source converter-based high-voltage direct current transmission network; for this purpose, a PSCAD/EMTDC simulation tool is used. The performance of the proposed breaker is also compared with other topologies. The comparative analysis shows that the proposed breaker is a good alternative considering high fault current interruption requirements, response time against fault current, and power losses.


Designs ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 28
Author(s):  
Hyosung Kim

The medium voltage DC (MVDC) type system can connect multiple terminals to a common MVDC bus, so it is possible to connect several renewable DC power sources to the common MVDC bus, but a DC circuit breaker is needed to isolate short circuit accidents that may occur in the MVDC bus. For this purpose, the concept of a hybrid DC circuit breaker that takes advantage of a low conduction loss contact type switch and an arcless-breaking semiconductor switch has been proposed. During break the hybrid switch, a dedicated current commutation device is required to temporarily bypass the load current flowing through the main switch into a semiconductor switch branch. Existing current commutation methods include a proactive method and a reverse current injection method by a LC (Inductor-capacitor) resonant circuit. This paper proposes a power circuit of a new MVDC hybrid circuit breaker using a low withstanding voltage capacitor branch for commutation and a sequence controller according to it, and verifies its operation through an experiment.


2016 ◽  
Vol 26 (7) ◽  
pp. 1-5 ◽  
Author(s):  
Bin Xiang ◽  
Licai Zhang ◽  
Kun Yang ◽  
Yaxiong Tan ◽  
Zhiyuan Liu ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


2021 ◽  
Author(s):  
Sudipta Sen ◽  
Shahab Mehraeen ◽  
Keyue Smedley

Author(s):  
D. S. Sanjeev ◽  
R. Anand ◽  
A. V. Ramana Reddy ◽  
T. Sudhakar Reddy

Author(s):  
Zheng John Shen ◽  
Yuanfeng Zhou ◽  
Risha Na ◽  
Triston Cooper ◽  
Mahmoud Al Ashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document