Design and Simulation of a Piezoelectric Cantilever Beam for Mechanical Vibration Energy Harvesting

Author(s):  
Wesley Poh Qi Tong ◽  
B. M. S Muhammad Ramadan ◽  
Thillainathan Logenthiran
2013 ◽  
Vol 562-565 ◽  
pp. 1052-1057 ◽  
Author(s):  
Xing Qiang Zhao ◽  
Zhi Yu Wen ◽  
Li Cheng Deng ◽  
Guo Xi Luo ◽  
Zheng Guo Shang ◽  
...  

A micro piezoelectric cantilever beam array is designed for vibration energy harvesting. A single degree of freedom analytical model is developed to predict the properties of the device and is verified by finite element method. The piezoelectric material Aluminum Nitride was chosen for the compatibility with the CMOS process. The devices consisting of 5 piezoelectric cantilever beams and one proof mass were fabricated using micromachining technology. The resonance frequency, voltage and power were tested at excitation acceleration of 5.0 g. The maximum output power of the device is 9.13 μW at the resonance frequency of 1315 Hz when piezoelectric beams are connected in parallel.


2012 ◽  
Vol 610-613 ◽  
pp. 2583-2588
Author(s):  
Jun Jie Gong ◽  
Ying Ying Xu ◽  
Zhi Lin Ruan

The vibration energy can be converted to electrical energy directly and efficiently using piezoelectric cantilever beam based on piezoelectric effect. Since its structure is simple and its working process is unpoisonous to the environment, the piezoelectric cantilever beam can be used in various fields comprehensively. The present paper perform an analysis on the vibration energy harvesting problem of piezoelectric bimorph cantilever beam. The piezoelectric cantilever model has been formulated using the theory of elasticity mechanics and piezoelectric theory. A prototype of piezoelectric power generator is set up to do vibration test, and the electromechanical coupling FEA model under vibration load is built to simulate its output displacement, stress and voltage. The present numerical results of piezoelectric bimorph cantilever coincide well with our related experimental results, which shows the validity of the present FEA model and the relate results.


Author(s):  
Enrico Bischur ◽  
Sebastian Pobering ◽  
Markus Menacher ◽  
Norbert Schwesinger

This paper describes an energy harvester working with the repeated deflection of a piezoelectric cantilever. The harvester works in flowing media like wind or water. The bending of the cantilever is driven by vortices traveling across it. The presented device is an easy solution for vibration energy harvesting without the need of external mechanical vibration. The working principle was determined with macroscopic models in wind and water channels. The harvester does not need in general a mechanical adaption to the external vibration frequency, because it oscillates always with its resonance frequency at different flow velocities. Furthermore a self synchronization of cantilevers arranged beside each other could be observed in water. A second system was able to supply a load of approximatly 2 mW in a wind channel at a flow velocity of 8 m/s.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2011 ◽  
Vol 483 ◽  
pp. 626-630 ◽  
Author(s):  
Hua An Ma ◽  
Jing Quan Liu ◽  
Gang Tang ◽  
Chun Sheng Yang ◽  
Yi Gui Li ◽  
...  

As the low-power wireless sensor components and the development of micro electromechanical systems, long-term supply of components is a major obstacle of their development. One of solutions to this problem is based on the environmental energy collection of piezoelectric vibration energy harvesting. Currently, frequency band of piezoelectric vibration energy harvester is narrow and the frequency is high, which is not fit for the vibration energy acquisition in the natural environment. A piezoelectric vibration energy harvester with lower working frequency and broader band is designed and a test system to analyze the harvester is presented in this paper. The traditional mass is replaced by a permanent magnet in this paper, While other two permanent magnets are also placed on the upper and above of the piezoelectric cantilever. Experiments showed, under the 0.5g acceleration, compared with the traditional non-magnetic piezoelectric vibration energy harvesting, a piezoelectric cantilever (length 40mm, width 8mm, thickness 0.8mm) has a peak-peak voltage of 32.4V, effectively enlarges working frequency band from 67HZ-105HZ to 63HZ-108HZ.


Sign in / Sign up

Export Citation Format

Share Document