Time-Frequency Division Multiple Access and the TFDMA Ad Hoc Network Based on the (n, n(n-1), n-1) Permutation Group Codes

Author(s):  
Li Peng
2019 ◽  
Vol 70 (4) ◽  
pp. 595-616 ◽  
Author(s):  
Abubakar Bello Tambawal ◽  
Rafidah Md. Noor ◽  
Rosli Salleh ◽  
Christopher Chembe ◽  
Mohammad Hossein Anisi ◽  
...  

2016 ◽  
Vol 63 ◽  
pp. 04017 ◽  
Author(s):  
Gang Zhan ◽  
Yi Fan Zhao ◽  
Hong Wei Ding ◽  
Sheng Jie Zhou ◽  
Long Jun Liu ◽  
...  

Author(s):  
Guilherme P. Aquino ◽  
Luciano L. Mendes

Abstract Recent advances in the communication systems culminated in a new class of multiple access schemes, named non-orthogonal multiple access (NOMA), where the main goal is to increase the spectrum efficiency by overlapping data from different users in a single time-frequency resource used by the physical layer. NOMA receivers can resolve the interference among data symbols from different users, increasing the overall system spectrum efficiency without introducing symbol error rate (SER) performance loss, which makes this class of multiple access techniques interesting for future mobile communication systems. This paper analyzes one promising NOMA technique, called sparse code multiple access (SCMA), where C users can share U<C time-frequency resources from the physical layer. Initially, the SCMA and orthogonal frequency division multiplexing (OFDM) integration is considered, defining a benchmark for the overall SER performance for the multiple access technique. Furthermore, this paper proposes the SCMA and generalized frequency division multiplexing (GFDM) integration. Since GFDM is a highly flexible non-orthogonal waveform that can mimic several other waveforms as corner cases, it is an interesting candidate for future wireless communication systems. This paper proposes two approaches for combining SCMA and GFDM. The first one combines a soft equalizer, called block expectation propagation (BEP), and a multi-user detection (MUD) scheme based on the sum-product algorithm (SPA). This approach achieves the best SER performance, but with the significant increment of the complexity at the receiver. In the second approach, BEP is integrated with a simplified MUD, which is an original contribution of this paper, aiming for reducing the receiver’s complexity at the cost of SER performance loss. The solutions proposed in this paper show that SCMA-GFDM can be an interesting solution for future mobile networks.


Author(s):  
E. Alwin Richard

Recent advancements in communication systems have resulted in a new class of multiple access schemes known as non-orthogonal multiple access (NOMA), the primary goal of which is to increase spectrum efficiency by overlapping data from different users in a single time-frequency resource used by the physical layer. NOMA receivers can resolve interference between data symbols from various users, hence increasing throughput. Initially, the combination of SCMA and orthogonal frequency division multiplexing (OFDM) is addressed, establishing a baseline for the overall SER performance of the multiple access strategy. Furthermore, this work suggests the merging of SCMA with generalised frequency division multiplexing (GFDM).GFDM is an intriguing possibility for future wireless communication systems since it is a very flexible non-orthogonal waveform that can imitate various different waveforms as corner cases. This research suggests two methods for integrating SCMA with GFDM.


Sign in / Sign up

Export Citation Format

Share Document