The potential use of high resolution X-band SAR moisture products for the calibration of a water balance model over bare agricultural soils (Tunisia)

Author(s):  
Azza Gorrab ◽  
Vincent Simonneaux ◽  
Mehrez Zribi ◽  
Sameh Saadi ◽  
Nicolas Baghdadi ◽  
...  
2021 ◽  
Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Giuseppe Ciraolo ◽  
Antonino Maltese ◽  
Marco Mancini

<p>Remote Sensing (RS) information has progressively found, in recent years, more and more applications in hydrological modelling as a valuable tool for easy and frequent collection of geophysical data. However, this kind of data should be handled carefully, minding its characteristics, spatial resolution and the heterogeneity of the target area.</p><p>In this work, a scale analysis on evapotranspiration estimates over heterogeneous crops is performed combining a distributed energy-water balance model (FEST-EWB) and high-resolution remotely-sensed Land Surface Temperature (LST) and vegetation data.</p><p>The FEST-EWB model is calibrated on measured LST, based on a procedure where every single pixel is modified independently one from the other; hence in each pixel of the analysed domain the minimum of the pixel difference between modelled RET and satellite observed LST is searched over the period of calibration.</p><p>The case study is a Sicilian vineyard, with test dates in the summer of 2008. Meteorological and energy fluxes data are available from an eddy-covariance station, while LST and vegetation data are obtained from low-altitude flights at the high resolution of 1.7 metres.</p><p>After a preliminary calibration on LST data and validation on energy fluxes, the scale analysis is performed in two ways: model input aggregation and model output aggregation. Four coarser scales are selected in reference to some common satellite products resolution: 10.2 m (in reference to Sentinel’s 10 m), 30.6 m (Landsat, 30 m), 244.8 m (MODIS visible, 250 m) and 734.4 m (MODIS, 1000 m). First, modelled surface temperature and evapotranspiration are aggregated to each scale by progressive averaging. Then, model inputs are upscaled to the same spatial resolutions and the model is calibrated anew, obtaining independent results directly at the target scale.</p><p>The results of the two procedures are found to be quite similar, testifying to the capacity of the model to provide accurate products for a heterogeneous area even at low resolutions. The robustness of the analysis is strengthened by a further comparison with two well-established energy-balance algorithms: the one source Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) model.</p>


2014 ◽  
Vol 519 ◽  
pp. 1848-1858 ◽  
Author(s):  
Francisco Pellicer-Martínez ◽  
José Miguel Martínez-Paz

2019 ◽  
Vol 35 (9) ◽  
pp. 954-975
Author(s):  
Olutoyin Adeola Fashae ◽  
Rotimi Oluseyi Obateru ◽  
Adeyemi Oludapo Olusola

2015 ◽  
Vol 19 (9) ◽  
pp. 3829-3844 ◽  
Author(s):  
J. Hoogeveen ◽  
J.-M. Faurès ◽  
L. Peiser ◽  
J. Burke ◽  
N. van de Giesen

Abstract. GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.


2013 ◽  
Vol 35 (4) ◽  
Author(s):  
Welliam Chaves Monteiro Silva ◽  
Aristides Ribeiro ◽  
Júlio Cesar Lima Neves ◽  
Nairam Felix de Barros ◽  
Fernando Palha Leite

2003 ◽  
Vol 17 (13) ◽  
pp. 2521-2539 ◽  
Author(s):  
Michael A. Rawlins ◽  
Richard B. Lammers ◽  
Steve Frolking ◽  
Bal�zs M. Fekete ◽  
Charles J. Vorosmarty

2016 ◽  
Vol 56 (2-3) ◽  
pp. 109-122 ◽  
Author(s):  
Cornelia Barth ◽  
Douglas P. Boyle ◽  
Benjamin J. Hatchett ◽  
Scott D. Bassett ◽  
Christopher B. Garner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document