Scale analysis of evapotranspiration estimates from an energy-water balance model and remotely sensed LST

Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Giuseppe Ciraolo ◽  
Antonino Maltese ◽  
Marco Mancini

<p>Remote Sensing (RS) information has progressively found, in recent years, more and more applications in hydrological modelling as a valuable tool for easy and frequent collection of geophysical data. However, this kind of data should be handled carefully, minding its characteristics, spatial resolution and the heterogeneity of the target area.</p><p>In this work, a scale analysis on evapotranspiration estimates over heterogeneous crops is performed combining a distributed energy-water balance model (FEST-EWB) and high-resolution remotely-sensed Land Surface Temperature (LST) and vegetation data.</p><p>The FEST-EWB model is calibrated on measured LST, based on a procedure where every single pixel is modified independently one from the other; hence in each pixel of the analysed domain the minimum of the pixel difference between modelled RET and satellite observed LST is searched over the period of calibration.</p><p>The case study is a Sicilian vineyard, with test dates in the summer of 2008. Meteorological and energy fluxes data are available from an eddy-covariance station, while LST and vegetation data are obtained from low-altitude flights at the high resolution of 1.7 metres.</p><p>After a preliminary calibration on LST data and validation on energy fluxes, the scale analysis is performed in two ways: model input aggregation and model output aggregation. Four coarser scales are selected in reference to some common satellite products resolution: 10.2 m (in reference to Sentinel’s 10 m), 30.6 m (Landsat, 30 m), 244.8 m (MODIS visible, 250 m) and 734.4 m (MODIS, 1000 m). First, modelled surface temperature and evapotranspiration are aggregated to each scale by progressive averaging. Then, model inputs are upscaled to the same spatial resolutions and the model is calibrated anew, obtaining independent results directly at the target scale.</p><p>The results of the two procedures are found to be quite similar, testifying to the capacity of the model to provide accurate products for a heterogeneous area even at low resolutions. The robustness of the analysis is strengthened by a further comparison with two well-established energy-balance algorithms: the one source Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) model.</p>

2010 ◽  
Vol 14 (10) ◽  
pp. 2141-2151 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in a hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with a patchwork of irrigated and non irrigated vegetated fields and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


2010 ◽  
Vol 7 (4) ◽  
pp. 5335-5368 ◽  
Author(s):  
C. Corbari ◽  
J. A. Sobrino ◽  
M. Mancini ◽  
V. Hidalgo

Abstract. Land surface temperature is the link between soil-vegetation-atmosphere fluxes and soil water content through the energy water balance. This paper analyses the representativeness of land surface temperature (LST) for a distributed hydrological water balance model (FEST-EWB) using LST from AHS (airborne hyperspectral scanner), with a spatial resolution between 2–4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the representative equilibrium temperature that closes the energy balance equation in the distributed hydrological model. Diurnal and nocturnal images are analyzed due to the non stable behaviour of the thermodynamic temperature and to the non linear effects induced by spatial heterogeneity. Spatial autocorrelation and scale of fluctuation of land surface temperature from FEST-EWB and AHS are analysed at different aggregation areas to better understand the scale of representativeness of land surface temperature in an hydrological process. The study site is the agricultural area of Barrax (Spain) that is a heterogeneous area with an alternation of irrigated and non irrigated vegetated field and bare soil. The used data set was collected during a field campaign from 10 to 15 July 2005 in the framework of the SEN2FLEX project.


2021 ◽  
Vol 188 ◽  
pp. 104466
Author(s):  
Nicola Paciolla ◽  
Chiara Corbari ◽  
Guangcheng Hu ◽  
Chaolei Zheng ◽  
Massimo Menenti ◽  
...  

2020 ◽  
Vol 12 (24) ◽  
pp. 4083
Author(s):  
Chiara Corbari ◽  
Drazen Skokovic Jovanovic ◽  
Luigi Nardella ◽  
Josè Sobrino ◽  
Marco Mancini

The feasibility of combining remotely sensed land surface temperature data (LST) and an energy–water balance model for improving evapotranspiration estimates over time distributed in space in the Capitanata irrigation consortium is analysed. The energy–water balance FEST-EWB model (flash flood event-based spatially distributed rainfall–runoff transformation—energy–water balance model) computes continuously in time and is distributed in space soil moisture (SM) and evapotranspiration (ET) fluxes solving for a land surface temperature that closes the energy–water balance equations. The comparison between modelled and observed LST was used to calibrate the model soil parametres with a newly developed pixel to pixel calibration procedure. The effects of the calibration procedure were analysed against ground measures of soil moisture and evapotranspiration. The FEST-EWB model was run at 30 m of spatial resolution for the period between 2013 and 2018. Absolute errors of 2.5 °C were obtained for LST estimates against satellite data; while RMSE around 0.06 and 40 Wm−2 are found for ground measured soil moisture and latent heat flux, respectively.


Sign in / Sign up

Export Citation Format

Share Document