scholarly journals Modeling and stability analysis of DC-DC buck converter via Takagi-Sugeno fuzzy approach

Author(s):  
Kamyar Mehran ◽  
Damian Giaouris ◽  
Bashar Zahawi
Author(s):  
Sucheng Liu ◽  
Xiang Li ◽  
Mengyu Xia ◽  
Qiangdong Qin ◽  
Xiaodong Liu

2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


2018 ◽  
Vol 60 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Remus Boata

AbstractThis paper proposes a new simple model to forecast daily global solar irradiation one day ahead using the Takagi-Sugeno fuzzy methods. The model is based on solar radiation data measured in Timisoara, Romania. The daily clearness index represents the direct variable used by the fuzzy algorithm. The model forecasts the clearness index at the moment of time t on basis of two previous values measured at time t-1 and t-2. An assessment of the model accuracy is performed.


Sign in / Sign up

Export Citation Format

Share Document