Camera Deployment for Video Panorama Generation in Wireless Visual Sensor Networks

Author(s):  
Enes Yildiz ◽  
Kemal Akkaya ◽  
Esra Sisikoglu ◽  
Mustafa Sir ◽  
Ismail Guneydas
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Qian Shen ◽  
Tao Jiang ◽  
Yongjun Zhu ◽  
Yin Wu

With the continuous improvement of encryption algorithms, some applications based on the architecture of wireless visual sensor networks have gradually shifted their attention to the imperceptibility and antijamming performance of secret images. To reduce the probability of secret images being detected, the current research focuses on hiding secret data in the least-significant bit of the cover image in the spatial domain or embedding data into the coefficients of the high-frequency band in the transformational domain, which usually leads to poor performance in a hostile environment. Therefore, some researchers proposed to substitute the coefficients of the medium-frequency band in the transformational domain with secret information to enhance the anti-interference performance. However, this idea would severely affect the imperceptibility of secret images. As a result, an improved version based on the partial preservation embedding algorithm was designed in this paper. Theory analysis and simulation results indicate that the proposed scheme performs better than the existing methods by directly substituting the coefficients of the medium-frequency band in the transformational domain, especially in the case of strong noise interference.


Author(s):  
Julien Sebastien Jainsky ◽  
Deepa Kundur

In this chapter, we discuss the topic of security in wireless visual sensor networks. In particular, attention is brought to steganographic security and how it can be discouraged without challenging the primary objectives of the network. We motivate the development and implementation of more lightweight steganalytic solutions that take into account the resources made available by the network’s deployment and its application in order to minimize the steganalysis impact on the WVSN workload. The concept of preventative steganalysis is also introduced in this chapter as a means to protect the network from the moment it is deployed. Preventative steganalysis aims at discouraging any potential steganographic attacks by processing the WVSN collected data such that the possibility of steganography becomes very small and the steganalysis leads to high rate of success.


2020 ◽  
Vol 20 (2) ◽  
pp. 778-785
Author(s):  
Mohammadjavad Mirzazadeh Moallem ◽  
Ali Aghagolzadeh ◽  
Reza Ghazalian

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Daniel G. Costa ◽  
Cristian Duran-Faundez

Availability in wireless visual sensor networks is a major design issue that is directly related to applications monitoring quality. For targets monitoring, visual sensors may be deployed to cover most or all of targets, and monitoring quality may be focused on how well a set of targets are being covered. However, targets may have different dimensions and it is expected that large targets may be only partially viewed by source nodes, which may affect coverage quality and lead to a state of unavailability. In this context, this article analyzes the effect of target’s size on effective coverage in wireless visual sensor networks. A new coverage metric, the Effective Target Viewing (ETV), is proposed to measure monitoring quality over a set of targets, which is exploited as a fundamental parameter for availability assessment. Results show that ETV can be used as a practical coverage metric when assessing availability in wireless visual sensor networks.


Sign in / Sign up

Export Citation Format

Share Document