Predicting the physical parameters of interplanetary shock waves using Artificial Neural Networks trained on NASA’s ACE and WIND spacecrafts

Author(s):  
Gani Caglar Coban ◽  
Abd-ur Raheem ◽  
Huseyin Cavus
2018 ◽  
Vol 184 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Gal Amit ◽  
Hanan Datz

Abstract We present here for the first time a fast and reliable automatic algorithm based on artificial neural networks for the anomaly detection of a thermoluminescence dosemeter (TLD) glow curves (GCs), and compare its performance with formerly developed support vector machine method. The GC shape of TLD depends on numerous physical parameters, which may significantly affect it. When integrated into a dosimetry laboratory, this automatic algorithm can classify ‘anomalous’ (having any kind of anomaly) GCs for manual review, and ‘regular’ (acceptable) GCs for automatic analysis. The new algorithm performance is then compared with two kinds of formerly developed support vector machine classifiers—regular and weighted ones—using three different metrics. Results show an impressive accuracy rate of 97% for TLD GCs that are correctly classified to either of the classes.


2018 ◽  
Vol 118 ◽  
pp. 212-219 ◽  
Author(s):  
Marjan Salari ◽  
Esmaeel Salami Shahid ◽  
Seied Hosein Afzali ◽  
Majid Ehteshami ◽  
Gea Oliveri Conti ◽  
...  

2016 ◽  
Vol 20 (4) ◽  
pp. 1405-1412 ◽  
Author(s):  
Yabin Sun ◽  
Dadiyorto Wendi ◽  
Dong Eon Kim ◽  
Shie-Yui Liong

Abstract. Accurate prediction of groundwater table is important for the efficient management of groundwater resources. Despite being the most widely used tools for depicting the hydrological regime, numerical models suffer from formidable constraints, such as extensive data demanding, high computational cost, and inevitable parameter uncertainty. Artificial neural networks (ANNs), in contrast, can make predictions on the basis of more easily accessible variables, rather than requiring explicit characterization of the physical systems and prior knowledge of the physical parameters. This study applies ANN to predict the groundwater table in a freshwater swamp forest of Singapore. The inputs to the network are solely the surrounding reservoir levels and rainfall. The results reveal that ANN is able to produce an accurate forecast with a leading time of 1 day, whereas the performance decreases when leading time increases to 3 and 7 days.


2015 ◽  
Vol 12 (9) ◽  
pp. 9317-9336 ◽  
Author(s):  
Y. Sun ◽  
D. Wendi ◽  
D. E. Kim ◽  
S.-Y. Liong

Abstract. Accurate prediction of groundwater table is important for the efficient management of groundwater resources. Despite being the most widely used tools for depicting the hydrological regime, numerical models suffer from formidable constraints, such as extensive data demanding, high computational cost and inevitable parameter uncertainty. Artificial neural networks (ANNs), in contrast, can make predictions on the basis of more easily accessible variables, rather than requiring explicit characterization of the physical systems and prior knowledge of the physical parameters. This study applies ANN to predict the groundwater table in a swamp forest of Singapore. A standard multilayer perceptron (MLP) is selected, trained with the Levenberg–Marquardt (LM) algorithm. The inputs to the network are solely the surrounding reservoir levels and rainfall. The results reveal that ANN is able to produce accurate forecast with a leading time up to 7 days, whereas the performance slightly decreases when leading time increases.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document