Assurance of QoS in the integration of cloud services and internet of things

Author(s):  
Hourieh Khodkari ◽  
Saeed Ghazi-Maghrebi ◽  
Abbas Asosheh
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


2020 ◽  
Vol 2 (1) ◽  
pp. 26-37
Author(s):  
Dr. Pasumponpandian

The progress of internet of things at a rapid pace and simultaneous development of the technologies and the processing capabilities has paved way for the development of decentralized systems that are relying on cloud services. Though the decentralized systems are founded on cloud complexities still prevail in transferring all the information’s that are been sensed through the IOT devices to the cloud. This because of the huge streams of information’s gathered by certain applications and the expectation to have a timely response, incurring minimized delay, computing energy and enhanced reliability. So this kind of decentralization has led to the development of middle layer between the cloud and the IOT, and was termed as the Edge layer, meaning bringing down the service of the cloud to the user edge. The paper puts forth the analysis of the data stream processing in the edge layer taking in the complexities involved in the computing the data streams of IOT in an edge layer and puts forth the real time analytics in the edge layer to examine the data streams of the internet of things offering a data- driven insight for parking system in the smart cities.


Author(s):  
Ghazi Hussein Shakah

<span>At the moment, all observed forms of communication are reduced either to a person-to-person scheme or person-to-device. But the Internet of Things (IoT) offers us a tremendous Internet future, in which will appear the communication type machine-machine (M2M). This makes it possible to integrate all communications into a common infrastructure, allowing not only to manage everything that is around us but also providing information about the state of these things. The purpose of this paper is to create the client part of the client-server system for remote control of home appliances using cloud services through commands entered using handwritten words. For this, we develop algorithms and methods for handwriting recognition using neural networks and implement a mobile application on the Android platform, which allows remote control of devices via cloud services based on commands entered using handwritten words. Anyway, this article will give a good understanding to other researchers who want to start their research on the IoT and will contribute to the effective accumulation of knowledge.</span>


Author(s):  
Saravanan K ◽  
P. Srinivasan

Cloud IoT has evolved from the convergence of Cloud computing with Internet of Things (IoT). The networked devices in the IoT world grow exponentially in the distributed computing paradigm and thus require the power of the Cloud to access and share computing and storage for these devices. Cloud offers scalable on-demand services to the IoT devices for effective communication and knowledge sharing. It alleviates the computational load of IoT, which makes the devices smarter. This chapter explores the different IoT services offered by the Cloud as well as application domains that are benefited by the Cloud IoT. The challenges on offloading the IoT computation into the Cloud are also discussed.


2021 ◽  
Vol 115 ◽  
pp. 671-679
Author(s):  
Jian Liu ◽  
Yuanmin Duan ◽  
Yuedong Wu ◽  
Rui Chen ◽  
Liang Chen ◽  
...  

2017 ◽  
Vol 13 (2) ◽  
pp. 155014771769489 ◽  
Author(s):  
Guowen Xing ◽  
Xiaolong Xu ◽  
Haolong Xiang ◽  
Shengjun Xue ◽  
Sai Ji ◽  
...  

With the rapid resource requirements of Internet of Things applications, cloud computing technology is regarded as a promising paradigm for resource provision. To improve the efficiency and effectiveness of cloud services, it is essential to improve the resource fairness and achieve energy savings. However, it is still a challenge to schedule the virtual machines in an energy-efficient manner while taking into consideration the resource fairness. In view of this challenge, a fair energy-efficient virtual machine scheduling method for Internet of Things applications is designed in this article. Specifically, energy and fairness are analyzed in a formal way. Then, a virtual machine scheduling method is proposed to achieve the energy efficiency and further improve the resource fairness during the executions of Internet of Things applications. Finally, experimental evaluation demonstrates the validity of our proposed method.


Cloud services among public and business companies have become popular in recent years. For production activities, many companies rely on cloud technology. Distributed Denial of Services (DDoS) attack is an extremely damaging general and critical type of cloud attacks. Several efforts have been made in recent years to identify numerous types of DDoS attacks. This paper discusses the different types of DDoS attacks and their cloud computing consequences. Distributed Denial of Service attack (DDoS) is a malicious attempt to disrupt the normal movement of a targeted server, service or network through influx of internet traffic overwhelming the target or its infrastructure. The use of multiple affected computer systems as a source of attacks makes DDoS attacks effective. Computers and other networked tools, including IoT phones, may be included on exploited machines. A DDoS attack from a high level resembles a traffic jam that is caused by roads that prevents normal travel at their desired destination. So DDoS Attack is a major challenging problem in integrated Cloud and IoT. Hence, this paper proposes Shield Advanced Mitigation System of Distributed Denial of Service Attack in the integration of Internet of Things and Cloud Computing Environment. This secure architecture use two verification process to identify whether user is legitimate or malicious. Dynamic Captcha Testing with Equal Probability test for first verification process, moreover Zigsaw Image Puzzle Test is used for second verification process, and Intrusion Detection Prevention System is used to identify and prevent malicious user, moreover reverse proxy is used to hide server location. These functional components and flow could strengthen security in Client side network to provide cloud services furthermore to overcome distributed denial of service attack in the integration of Internet of Things and Cloud Environment.


2019 ◽  
Vol 9 (1) ◽  
pp. 166 ◽  
Author(s):  
Farhan Amin ◽  
Awais Ahmad ◽  
Gyu Sang Choi

The Internet of Things (IoT) is an interconnected network of heterogeneous entities, such as sensors and embedded devices. During the current era, a new field of research has emerged, referred to as the social IoT, which mainly includes social networking features. The social IoT refers to devices that are capable of creating interactions with each other to independently achieve a common goal. Based on the structure, the support of numerous applications, and networking services, the social IoT is preferred over the traditional IoT. However, aspects like the roles of users and network navigability are major challenges that provoke users’ fears of data disclosure and privacy violations. Thus, it is important to provide reliable data analyses by using trust- and friendliness-based properties. This study was designed because of the limited availability of information in this area. It is a classified catalog of trust- and friendliness-based approaches in the social IoT with important highlights of important constraints, such as scalability, adaptability, and suitable network structures (for instance, human-to-human and human-to-object). In addition, typical concerns like communities of interest and social contacts are discussed in detail, with particular emphasis on friendliness- and trust-based properties, such as service composition, social similarity, and integrated cloud services.


Sign in / Sign up

Export Citation Format

Share Document