SITSA-RT: An Information Theory Inspired Real-Time Multiprocessor Scheduler

Author(s):  
Carlos A. C. Rincon ◽  
Albert M.K. Cheng
Keyword(s):  
2017 ◽  
Vol 9 (4) ◽  
pp. 93-96 ◽  
Author(s):  
Carlos A. Rincon C. ◽  
Xingliang Zou ◽  
Albert M. K. Cheng

2017 ◽  
Author(s):  
Joe Z. Tsien ◽  
Meng Li

AbstractOne important goal of BRAIN projects is to crack the neural code — to understand how information is represented in patterns of electrical activity generated by ensembles of neurons. Yet the major stumbling block in the understanding of neural code isneuronal variability- neurons in the brain discharge their spikes with tremendous variability in both thecontrolresting states and across trials within the same experiments. Such on-going spike variability imposes a great conceptual challenge to the classic rate code and/or synchrony-based temporal code. In practice, spike variability is typically removed via over-the-trial averaging methods such as peri-event spike histogram. In contrast to view neuronal variability as a noise problem, here we hypothesize that neuronal variability should be viewed as theself-information processor. Under this conceptual framework, neurons transmit their information by conforming to the basic logic of the statistical Self-Information Theory: spikes with higher-probability inter-spike-intervals (ISI) contain less information, whereas spikes with lower-probability ISIs convey more information, termed assurprisal spikes. In other words, real-time information is encoded not by changes in firing frequency per se, but rather by spike’s variability probability. When these surprisal spikes occur as positive surprisals or negative surprisals in a temporally coordinated manner across populations of cells, they generate cell-assembly neural code to convey discrete quanta of information in real-time. Importantly, such surprisal code can afford not only robust resilience to interference, but also biochemical coupling to energy metabolism, protein synthesis and gene expression at both synaptic sites and cell soma. We describe how this neural self-information theory might be used as a general decoding strategy to uncover the brain’s various cell assemblies in an unbiased manner.


2013 ◽  
Vol 846-847 ◽  
pp. 1881-1884
Author(s):  
Hong Yu He

The Internet of things is a new kind of application technology. It is the extension and expansion of Internet technology. The real-time information theory in the Internet of things promotes the development of China's industry, agriculture and military aspects. Therefore, we should strengthen the study of Internet of things real-time information access problems. This paper introduces the Internet of things, the Internet of things real-time information meaning and basic characteristic, and further discusses the related application of the Internet of things real-time information in detail. It researches the advantages and disadvantages of different access path of the Internet of things real-time information, and tries to explore a way which is conducive to the further development of the Internet of things real-time information theory.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Author(s):  
R. Rajesh ◽  
R. Droopad ◽  
C. H. Kuo ◽  
R. W. Carpenter ◽  
G. N. Maracas

Knowledge of material pseudodielectric functions at MBE growth temperatures is essential for achieving in-situ, real time growth control. This allows us to accurately monitor and control thicknesses of the layers during growth. Undesired effusion cell temperature fluctuations during growth can thus be compensated for in real-time by spectroscopic ellipsometry. The accuracy in determining pseudodielectric functions is increased if one does not require applying a structure model to correct for the presence of an unknown surface layer such as a native oxide. Performing these measurements in an MBE reactor on as-grown material gives us this advantage. Thus, a simple three phase model (vacuum/thin film/substrate) can be used to obtain thin film data without uncertainties arising from a surface oxide layer of unknown composition and temperature dependence.In this study, we obtain the pseudodielectric functions of MBE-grown AlAs from growth temperature (650°C) to room temperature (30°C). The profile of the wavelength-dependent function from the ellipsometry data indicated a rough surface after growth of 0.5 μm of AlAs at a substrate temperature of 600°C, which is typical for MBE-growth of GaAs.


Sign in / Sign up

Export Citation Format

Share Document