scholarly journals Parallel and Distributed Task-Based Kirchhoff Seismic Pre-Stack Depth Migration Application

Author(s):  
Jerome Gurhem ◽  
Henri Calandra ◽  
Serge G. Petiton
Keyword(s):  
Author(s):  
John Gray ◽  
Mike Baynham

This chapter considers the phenomenon of queer migration from a linguistic perspective, paying particular attention to the constitutive role of spatial mobility in narrative and its role in the construction of queer migrant identities. The chapter begins by looking at the way in which queer migration has been discussed in the literature and then moves on to address three different types of queer migration in greater depth: migration within national borders from the village/countryside to the city; migration between cities in member states within the context of the European Union; and finally, asylum-seeking within the context of migration from the Global South to the Global North. The chapter concludes by suggesting that queer migration is a complex phenomenon in which the intersection of sexuality, gender identity, desire, affect, abjection, economic necessity, class, politics, and fear for one’s life combine in ways that are unique in the lives of individual migrants.


2007 ◽  
Vol 171 (3) ◽  
pp. 1308-1313 ◽  
Author(s):  
Linbin Zhang ◽  
James W. Rector ◽  
G. Michael Hoversten ◽  
Sergey Fomel
Keyword(s):  

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. S131-S143 ◽  
Author(s):  
Alexander Klokov ◽  
Sergey Fomel

Common-reflection angle migration can produce migrated gathers either in the scattering-angle domain or in the dip-angle domain. The latter reveals a clear distinction between reflection and diffraction events. We derived analytical expressions for events in the dip-angle domain and found that the shape difference can be used for reflection/diffraction separation. We defined reflection and diffraction models in the Radon space. The Radon transform allowed us to isolate diffractions from reflections and noise. The separation procedure can be performed after either time migration or depth migration. Synthetic and real data examples confirmed the validity of this technique.


Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1592-1603 ◽  
Author(s):  
Yonghe Sun ◽  
Fuhao Qin ◽  
Steve Checkles ◽  
Jacques P. Leveille

A beam implementation is presented for efficient full‐volume 3-D prestack Kirchhoff depth migration of seismic data. Unlike conventional Kirchhoff migration in which the input seismic traces in time are migrated one trace at a time into the 3-D image volume for the earth’s subsurface, the beam migration processes a group of input traces (a supergather) together. The requirement for a supergather is that the source and receiver coordinates of the traces fall into two small surface patches. The patches are small enough that a single set of time maps pertaining to the centers of the patches can be used to migrate all the traces within the supergather by Taylor expansion or interpolation. The migration of a supergather consists of two major steps: stacking the traces into a τ-P beam volume, and mapping the beams into the image volume. Since the beam volume is much smaller than the image volume, the beam migration cost is roughly proportional to the number of input supergathers. The computational speedup of beam migration over conventional Kirchhoff migration is roughly proportional to [Formula: see text], the average number of traces per supergather, resulting a theoretical speedup up to two orders of magnitudes. The beam migration was successfully implemented and has been in production use for several years. A factor of 5–25 speedup has been achieved in our in‐house depth migrations. The implementation made 3-D prestack full‐volume depth imaging feasible in a parallel distributed environment.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1226-1237 ◽  
Author(s):  
Irina Apostoiu‐Marin ◽  
Andreas Ehinger

Prestack depth migration can be used in the velocity model estimation process if one succeeds in interpreting depth events obtained with erroneous velocity models. The interpretational difficulty arises from the fact that migration with erroneous velocity does not yield the geologically correct reflector geometries and that individual migrated images suffer from poor signal‐to‐noise ratio. Moreover, migrated events may be of considerable complexity and thus hard to identify. In this paper, we examine the influence of wrong velocity models on the output of prestack depth migration in the case of straight reflector and point diffractor data in homogeneous media. To avoid obscuring migration results by artifacts (“smiles”), we use a geometrical technique for modeling and migration yielding a point‐to‐point map from time‐domain data to depth‐domain data. We discover that strong deformation of migrated events may occur even in situations of simple structures and small velocity errors. From a kinematical point of view, we compare the results of common‐shot and common‐offset migration. and we find that common‐offset migration with erroneous velocity models yields less severe image distortion than common‐shot migration. However, for any kind of migration, it is important to use the entire cube of migrated data to consistently interpret in the prestack depth‐migrated domain.


Geophysics ◽  
1991 ◽  
Vol 56 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Moshe Reshef

Nonflat surface topography introduces a numerical problem for migration algorithms that are based on depth extrapolation. Since the numerically efficient migration schemes start at a flat interface, wave‐equation datuming is required (Berryhill, 1979) prior to the migration. The computationally expensive datuming procedure is often replaced by a simple time shift for the elevation to datum correction. For nonvertically traveling energy this correction is inaccurate. Subsequent migration wrongly positions the reflectors in depth.


Author(s):  
E.A. Danko ◽  
◽  
A.V. Gaiduk ◽  
D.N. Tverdokhlebov ◽  
E.I. Goguzeva ◽  
...  

2021 ◽  
Author(s):  
Olaf Hellwig ◽  
Stefan Buske

<p>The polymetallic, hydrothermal deposit of the Freiberg mining district in the southeastern part of Germany is characterised by ore veins that are framed by Proterozoic orthogneiss. The ore veins consist mainly of quarz, sulfides, carbonates, barite and flourite, which are associated with silver, lead and tin. Today the Freiberg University of Mining and Technology is operating the shafts Reiche Zeche and Alte Elisabeth for research and teaching purposes with altogether 14 km of accessible underground galleries. The mine together with the most prominent geological structures of the central mining district are included in a 3D digital model, which is used in this study to study seismic acquisition geometries that can help to image the shallow as well as the deeper parts of the ore-bearing veins. These veins with dip angles between 40° and 85° are represented by triangulated surfaces in the digital geological model. In order to import these surfaces into our seismic finite-difference simulation code, they have to be converted into bodies with a certain thickness and specific elastic properties in a first step. In a second step, these bodies with their properties have to be discretized on a hexahedral finite-difference grid with dimensions of 1000 m by 1000 m in the horizontal direction and 500 m in the vertical direction. Sources and receiver lines are placed on the surface along roads near the mine. A Ricker wavelet with a central frequency of 50 Hz is used as the source signature at all excitation points. Beside the surface receivers, additional receivers are situated in accessible galleries of the mine at three different depth levels of 100 m, 150 m and 220 m below the surface. Since previous mining activities followed primarily the ore veins, there are only few pilot-headings that cut through longer gneiss sections. Only these positions surrounded by gneiss are suitable for imaging the ore veins. Based on this geometry, a synthetic seismic data set is generated with our explicit finite-difference time-stepping scheme, which solves the acoustic wave equation with second order accurate finite-difference operators in space and time. The scheme is parallelised using a decomposition of the spatial finite-difference grid into subdomains and Message Passing Interface for the exchange of the wavefields between neighbouring subdomains. The resulting synthetic seismic shot gathers are used as input for Kirchhoff prestack depth migration as well as Fresnel volume migration in order to image the ore veins. Only a top mute to remove the direct waves and a time-dependent gain to correct the amplitude decay due to the geometrical spreading are applied to the data before the migration. The combination of surface and in-mine acquisition helps to improve the image of the deeper parts of the dipping ore veins. Considering the limitations for placing receivers in the mine, Fresnel volume migration as a focusing version of Kirchhoff prestack depth migration helps to avoid migration artefacts caused by this sparse and limited acquisition geometry.</p>


Sign in / Sign up

Export Citation Format

Share Document