Separation and imaging of seismic diffractions using migrated dip-angle gathers

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. S131-S143 ◽  
Author(s):  
Alexander Klokov ◽  
Sergey Fomel

Common-reflection angle migration can produce migrated gathers either in the scattering-angle domain or in the dip-angle domain. The latter reveals a clear distinction between reflection and diffraction events. We derived analytical expressions for events in the dip-angle domain and found that the shape difference can be used for reflection/diffraction separation. We defined reflection and diffraction models in the Radon space. The Radon transform allowed us to isolate diffractions from reflections and noise. The separation procedure can be performed after either time migration or depth migration. Synthetic and real data examples confirmed the validity of this technique.

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. S105-S111 ◽  
Author(s):  
Sheng Xu ◽  
Feng Chen ◽  
Bing Tang ◽  
Gilles Lambare

When using seismic data to image complex structures, the reverse time migration (RTM) algorithm generally provides the best results when the velocity model is accurate. With an inexact model, moveouts appear in common image gathers (CIGs), which are either in the surface offset domain or in subsurface angle domain; thus, the stacked image is not well focused. In extended image gathers, the strongest energy of a seismic event may occur at non-zero-lag in time-shift or offset-shift gathers. Based on the operation of RTM images produced by the time-shift imaging condition, the non-zero-lag time-shift images exhibit a spatial shift; we propose an approach to correct them by a second pass of migration similar to zero-offset depth migration; the proposed approach is based on the local poststack depth migration assumption. After the proposed second-pass migration, the time-shift CIGs appear to be flat and can be stacked. The stack enhances the energy of seismic events that are defocused at zero time lag due to the inaccuracy of the model, even though the new focused events stay at the previous positions, which might deviate from the true positions of seismic reflection. With the stack, our proposed approach is also able to attenuate the long-wavelength RTM artifacts. In the case of tilted transverse isotropic migration, we propose a scheme to defocus the coherent noise, such as migration artifacts from residual multiples, by applying the original migration velocity model along the symmetry axis but with different anisotropic parameters in the second pass of migration. We demonstrate that our approach is effective to attenuate the coherent noise at subsalt area with two synthetic data sets and one real data set from the Gulf of Mexico.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. D35-D43 ◽  
Author(s):  
Moshe Reshef ◽  
Murray Roth

In the method for applying anisotropic corrections after isotropic prestack depth migration (PSDM), the correction, which is calculated and implemented in the depth domain, is defined as a time difference between isotropic and anisotropic traveltimes, under the assumption that the vertical velocity is known. The definition of this correction uses a special postmigration common-image-gather (CIG) ordering, which collects the migrated data according to the input-trace’s source and receiver distance from the surface CIG location. In this postmigration domain, the dip of the events can be directly related to their horizontal position in the CIG, called the imaging offset, and the separation of flat and dipping reflectors becomes easy to perform. The dependency of the seismic anisotropic effect on the subsurface dip angle is well pronounced in these CIGs. After application of an isotropic PSDM, effective anisotropic-parameter estimation is performed at selected CIG locations by using a simple two-parameter scan procedure. The optimal anisotropic parameters can be used to perform a final anisotropic PSDM or to apply a residual correction to the isotropically migrated data. We demonstrate the method for P-wave data in 2D media with vertical transverse isotropy (VTI) symmetry by using both synthetic and real data. We also present a strategy for handling the ambiguity between the vertical velocity and the anisotropic parameters.


Geophysics ◽  
1994 ◽  
Vol 59 (9) ◽  
pp. 1419-1434 ◽  
Author(s):  
James L. Black ◽  
Matthew A. Brzostowski

Even if the correct velocity is used, time migration mispositions events whenever the velocity changes laterally. These errors increase with lateral velocity variation, depth of burial, and dip angle θ. Our analyses of two model types, one with an implicit gradient and one with an explicit gradient, yield simple “rules of thumb” for these errors to first order in the lateral gradient. The x error is [Formula: see text], and the z error is [Formula: see text], where the quantity A = A(x, z) contains the information about depth of burial and magnitude of lateral gradient. These rules can be used to determine when depth migration is needed. Further analysis also shows that the image‐ray correction to time migration is accurate only at small dip. For dipping events, the image‐ray correction must be supplemented by a shift in x of the form [Formula: see text] and a shift in z given by [Formula: see text]. These time‐migration corrections take the same form for both the models we have studied, suggesting a general scheme for correcting time migration, which we call “remedial migration.”


Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. S73-S83 ◽  
Author(s):  
Hengchang Dai ◽  
Xiang-Yang Li

We analyze prestack PS migration images and their focusing sensitivity to errors in the computed PS traveltimes. The key analysis tool is a formula that defines PS traveltimes errors as explicit functions of velocity model errors. The most important factors in this formula are the PS velocity and the P-to-S velocity ratio. Analysis shows that the error in PS traveltime for shallow events is usually larger than that for deep events for a given error in the velocity model. Also the PS traveltime is affected more severely by errors in the PS-velocity model than in the P-to-S velocity ratio. The effect of traveltime errors increases with dip angle of reflectors. Numerical analysis shows that, for a fixed scatterpoint, the effect of the PS-wave velocity error is several times larger than the effect of the error in the P-to-S velocity ratio. Examples from field data show that the PS-wave velocity must be estimated accurately with errors less than 1% in order perfectly flatten the events in common-image-point (CIP) gathers. In contrast, an error in the PS-velocity ratio of up to several percent is allowed. This suggests that for acceptable PS-wave migration, only the PS-velocity model and a rough estimate of the P-to-S velocity ratio is needed. This finding is useful for processing PS-wave data because it is difficult and time consuming to estimate the velocity ratio accurately from the real data. This finding is also useful for our understanding of PS-wave behavior and for PS-wave imaging.


Geophysics ◽  
1989 ◽  
Vol 54 (9) ◽  
pp. 1204-1208 ◽  
Author(s):  
Yu‐chiung Teng ◽  
Ting‐fang Dai

Reverse‐time migration of zero‐offset data for acoustic waves has been successfully implemented by Whitmore (1983), Baysal et al. (1983), McMechan (1983), and Loewenthal and Mufti (1983). In reverse‐time migration, data recorded on the surface are used as the boundary condition and are extrapolated backward in time (Whitmore, 1983; Levin, 1984). Reverse‐time migration is mathematically a well‐posed problem. This is in contrast to conventional depth‐extrapolation‐migration schemes, in which the surface data are initial‐value conditions for solving the wave equation. Reverse‐time migration may offer improvements over conventional depth migration due to its freedom from dip‐angle limitations.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S235-S246 ◽  
Author(s):  
Jincheng Xu ◽  
Jianfeng Zhang

We have developed a modified prestack time migration (PSTM) approach that can directly image nonplanar data by using two effective velocity parameters above and below a datum. The proposed extension improves the so-called topography PSTM by introducing a dip-angle domain stationary-phase migration (or filtering) and combining effective velocity inversion with the residual static corrections. The stationary-phase migration to constrain the imaging aperture within Fresnel zones significantly improves the signal-to-noise ratio (S/N) of the image gathers, especially in the presence of steeply dipping structures. This helps to extract an accurate residual moveout from the common shot and receiver image gathers, and the surface-consistent residual statics hidden in these image gathers can be simultaneously obtained from an inversion process. As a result, the final migrated images show higher S/N and are better focused than the conventional topography PSTM. The proposed technique can handle rugged topography, especially in the presence of high near-surface velocities, without the need for prior elevation static corrections. The SEG foothills overthrust model and a real data set acquired on a piedmont zone are used to validate the modified topography PSTM. Synthetic and field data examples are obtained with good results.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
German Garabito ◽  
José Silas dos Santos Silva ◽  
Williams Lima

In land seismic data processing, the prestack time migration (PSTM) image remains the standard imaging output, but a reliable migrated image of the subsurface depends on the accuracy of the migration velocity model. We have adopted two new algorithms for time-domain migration velocity analysis based on wavefield attributes of the common-reflection-surface (CRS) stack method. These attributes, extracted from multicoverage data, were successfully applied to build the velocity model in the depth domain through tomographic inversion of the normal-incidence-point (NIP) wave. However, there is no practical and reliable method for determining an accurate and geologically consistent time-migration velocity model from these CRS attributes. We introduce an interactive method to determine the migration velocity model in the time domain based on the application of NIP wave attributes and the CRS stacking operator for diffractions, to generate synthetic diffractions on the reflection events of the zero-offset (ZO) CRS stacked section. In the ZO data with diffractions, the poststack time migration (post-STM) is applied with a set of constant velocities, and the migration velocities are then selected through a focusing analysis of the simulated diffractions. We also introduce an algorithm to automatically calculate the migration velocity model from the CRS attributes picked for the main reflection events in the ZO data. We determine the precision of our diffraction focusing velocity analysis and the automatic velocity calculation algorithms using two synthetic models. We also applied them to real 2D land data with low quality and low fold to estimate the time-domain migration velocity model. The velocity models obtained through our methods were validated by applying them in the Kirchhoff PSTM of real data, in which the velocity model from the diffraction focusing analysis provided significant improvements in the quality of the migrated image compared to the legacy image and to the migrated image obtained using the automatically calculated velocity model.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.


Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. V1-V11 ◽  
Author(s):  
Amr Ibrahim ◽  
Mauricio D. Sacchi

We adopted the robust Radon transform to eliminate erratic incoherent noise that arises in common receiver gathers when simultaneous source data are acquired. The proposed robust Radon transform was posed as an inverse problem using an [Formula: see text] misfit that is not sensitive to erratic noise. The latter permitted us to design Radon algorithms that are capable of eliminating incoherent noise in common receiver gathers. We also compared nonrobust and robust Radon transforms that are implemented via a quadratic ([Formula: see text]) or a sparse ([Formula: see text]) penalty term in the cost function. The results demonstrated the importance of incorporating a robust misfit functional in the Radon transform to cope with simultaneous source interferences. Synthetic and real data examples proved that the robust Radon transform produces more accurate data estimates than least-squares and sparse Radon transforms.


Sign in / Sign up

Export Citation Format

Share Document