A 0.9V 0.35¿m Adaptively Biased CMOS LDO Regulator with Fast Transient Response

Author(s):  
Yat-Hei Lam ◽  
Wing-Hung Ki
2018 ◽  
Vol 27 (09) ◽  
pp. 1850143
Author(s):  
Shuangxing Zhao ◽  
Chenchang Zhan ◽  
Guigang Cai

This paper presents a [Formula: see text]-enabled output-capacitor-free CMOS low-dropout (LDO) regulator with fast transient response for cost-effective system-on-chip (SoC) power management applications with elevated-[Formula: see text] supply. All the MOS transistors used in the proposed LDO regulator are low voltage (LV) MOSFETs, hence saving the high voltage devices fabrication cost required in a conventional design. Two LV power transistors are cascaded in the power train. A mid-rail regulator is used to generate [Formula: see text] voltage for the power transistors as well as the main error amplifier to guarantee safe operation. The mid-rail regulator employs stacking transistors to handle the high supply voltage. Moreover, Miller compensation with adaptive biasing is used to achieve good stability and fast transient response. A proof-of-concept design is fabricated in a standard 0.18-[Formula: see text]m CMOS process which achieves 3.3–3.6[Formula: see text]V nominal input, 3.1[Formula: see text]V nominal output and 100[Formula: see text]mA loading capability with all the transistors being 1.8[Formula: see text]V MOSFETs.


2021 ◽  
Vol 16 ◽  
pp. 262-274
Author(s):  
Said El Mouzouade ◽  
Karim El Khadiri ◽  
Zakia Lakhliai ◽  
Driss Chenouni ◽  
Ahmed Tahiri

A hybrid-mode low-drop out (LDO) voltage regulator with fast transient response performance for IoT applications is proposed in this paper. The proposed LDO regulator consist of two sections. First section is an analog regulator which includes a folded cascode operational amplifier to achieve good PSRR. Second section is current DAC and detectors whitch includes a cource current DAC, sink current DAC, undershoot detectors, and overshoot detectors. The current DAC and detectors are designed to obtain a low drop out and fast transient response. The proposed hybrid-mode LDO voltage regulator has been designed, simulated and layouted in Cadence using TSMC 90 nm CMOS technology. The input range of the LDO regulator is 1.2–2.0 V, and it can produces an output voltage of 1.2V. The LDO regulator achieves 58uA quiescent current, -69 PSRR @ 1 KHz noise frequency and an output voltage drop of around 60mV for a load current step of 100 mA. The final design occupies approximately 0.09 mm2.


Sign in / Sign up

Export Citation Format

Share Document