An integrated approach to planning and scheduling at Philips Semiconductors

Author(s):  
C. Malmstrom
Author(s):  
Galina Merkuryeva ◽  
Vitaly Bolshakov ◽  
Maksims Kornevs

An Integrated Approach to Product Delivery Planning and SchedulingProduct delivery planning and scheduling is a task of high priority in transport logistics. In distribution centres this task is related to deliveries of various types of goods in predefined time windows. In real-life applications the problem has different stochastic performance criteria and conditions. Optimisation of schedules itself is time consuming and requires an expert knowledge. In this paper an integrated approach to product delivery planning and scheduling is proposed. It is based on a cluster analysis of demand data of stores to identify typical dynamic demand patterns and product delivery tactical plans, and simulation optimisation to find optimal parameters of transportation or vehicle schedules. Here, a cluster analysis of the demand data by using the K-means clustering algorithm and silhouette plots mean values is performed, and an NBTree-based classification model is built. In order to find an optimal grouping of stores into regions based on their geographical locations and the total demand uniformly distributed over regions, a multiobjective optimisation problem is formulated and solved with the NSGA II algorithm.


Minerals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 560 ◽  
Author(s):  
Simon Dominy ◽  
Louisa O’Connor ◽  
Anita Parbhakar-Fox ◽  
Hylke Glass ◽  
Saranchimeg Purevgerel

Geometallurgy is an important addition to any evaluation project or mining operation. As an integrated approach, it establishes 3D models which enable the optimisation of net present value and effective orebody management, while minimising technical and operational risk to ultimately provide more resilient operations. Critically, through spatial identification of variability, it allows the development of strategies to mitigate the risks related to variability (e.g., collect additional data, revise the mine plan, adapt or change the process strategy, or engineer flexibility into the system). Geometallurgy promotes sustainable development when all stages of extraction are performed in an optimal manner from a technical, environmental, and social perspective. To achieve these goals, development of innovative technologies and approaches along the entire mine value chain are being established. Geometallurgy has been shown to intensify collaboration among operational stakeholders, creating an environment for sharing orebody knowledge and improving data acquisition and interpretation, leading to the integration of such data and knowledge into mine planning and scheduling. These aspects create better business optimisation and utilisation of staff, and lead to operations that are more resilient to both technical and non-technical variability. Geometallurgy encompasses activities that utilise improved understanding of the properties of ore and waste, which impact positively or negatively on the value of the product, concentrate, or metal. Properties not only include those that impact on processing efficiency, but also those of materials which will impact on other actions such as blasting and waste management. Companies that embrace the geometallurgical approach will benefit from increased net present value and shareholder value.


CIRP Annals ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 413-417 ◽  
Author(s):  
G. Chryssolouris ◽  
S. Chan ◽  
N.P. Suh

2007 ◽  
Vol 6 (1) ◽  
pp. 185-186
Author(s):  
E COSENTINO ◽  
E RINALDI ◽  
D DEGLIESPOSTI ◽  
S BACCHELLI ◽  
D DESANCTIS ◽  
...  

2004 ◽  
Vol 49 (3) ◽  
pp. 337-338
Author(s):  
Robert T. Ammerman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document