scholarly journals An Integrated Approach to Product Delivery Planning and Scheduling

Author(s):  
Galina Merkuryeva ◽  
Vitaly Bolshakov ◽  
Maksims Kornevs

An Integrated Approach to Product Delivery Planning and SchedulingProduct delivery planning and scheduling is a task of high priority in transport logistics. In distribution centres this task is related to deliveries of various types of goods in predefined time windows. In real-life applications the problem has different stochastic performance criteria and conditions. Optimisation of schedules itself is time consuming and requires an expert knowledge. In this paper an integrated approach to product delivery planning and scheduling is proposed. It is based on a cluster analysis of demand data of stores to identify typical dynamic demand patterns and product delivery tactical plans, and simulation optimisation to find optimal parameters of transportation or vehicle schedules. Here, a cluster analysis of the demand data by using the K-means clustering algorithm and silhouette plots mean values is performed, and an NBTree-based classification model is built. In order to find an optimal grouping of stores into regions based on their geographical locations and the total demand uniformly distributed over regions, a multiobjective optimisation problem is formulated and solved with the NSGA II algorithm.

2020 ◽  
Vol 7 (6) ◽  
pp. 761-774
Author(s):  
Kailash Changdeorao Bhosale ◽  
Padmakar Jagannath Pawar

Abstract Production planning and scheduling problems are highly interdependent as scheduling provides optimum allocation of resources and planning is an optimum utilization of these allocated resources to serve multiple customers. Researchers have solved production planning and scheduling problems by the sequential method. But, in this case, the solution obtained by the production planning problem may not be feasible for scheduling method. Hence, production planning and scheduling problems must be solved simultaneously. Therefore, in this work, a mathematical model is developed to integrate production planning and scheduling problems. The solution to this integrated planning and scheduling problem is attempted by using a discrete artificial bee colony (DABC) algorithm. To speed up the DABC algorithm, a k-means clustering algorithm is used in the initial population generation phase. This k-means clustering algorithm will help to converge the algorithm in lesser time. A real-life case study of a soap manufacturing industry is presented to demonstrate the effectiveness of the proposed approach. An objective function to minimize overall cost, which comprises the processing cost, material cost, utility cost, and changeover cost, is considered. The results obtained by using DABC algorithm are compared with those obtained by CPLEX software. There is a saving of ₹2 23 324 for weeks 1–4 in overall cost compared with the results obtained by using CPLEX software.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Liwen Peng ◽  
Yongguo Liu

Multilabel classification (MLC) learning, which is widely applied in real-world applications, is a very important problem in machine learning. Some studies show that a clustering-based MLC framework performs effectively compared to a nonclustering framework. In this paper, we explore the clustering-based MLC problem. Multilabel feature selection also plays an important role in classification learning because many redundant and irrelevant features can degrade performance and a good feature selection algorithm can reduce computational complexity and improve classification accuracy. In this study, we consider feature dependence and feature interaction simultaneously, and we propose a multilabel feature selection algorithm as a preprocessing stage before MLC. Typically, existing cluster-based MLC frameworks employ a hard cluster method. In practice, the instances of multilabel datasets are distinguished in a single cluster by such frameworks; however, the overlapping nature of multilabel instances is such that, in real-life applications, instances may not belong to only a single class. Therefore, we propose a MLC model that combines feature selection with an overlapping clustering algorithm. Experimental results demonstrate that various clustering algorithms show different performance for MLC, and the proposed overlapping clustering-based MLC model may be more suitable.


2015 ◽  
pp. 125-138 ◽  
Author(s):  
I. V. Goncharenko

In this article we proposed a new method of non-hierarchical cluster analysis using k-nearest-neighbor graph and discussed it with respect to vegetation classification. The method of k-nearest neighbor (k-NN) classification was originally developed in 1951 (Fix, Hodges, 1951). Later a term “k-NN graph” and a few algorithms of k-NN clustering appeared (Cover, Hart, 1967; Brito et al., 1997). In biology k-NN is used in analysis of protein structures and genome sequences. Most of k-NN clustering algorithms build «excessive» graph firstly, so called hypergraph, and then truncate it to subgraphs, just partitioning and coarsening hypergraph. We developed other strategy, the “upward” clustering in forming (assembling consequentially) one cluster after the other. Until today graph-based cluster analysis has not been considered concerning classification of vegetation datasets.


Author(s):  
Ana Belén Ramos-Guajardo

AbstractA new clustering method for random intervals that are measured in the same units over the same group of individuals is provided. It takes into account the similarity degree between the expected values of the random intervals that can be analyzed by means of a two-sample similarity bootstrap test. Thus, the expectations of each pair of random intervals are compared through that test and a p-value matrix is finally obtained. The suggested clustering algorithm considers such a matrix where each p-value can be seen at the same time as a kind of similarity between the random intervals. The algorithm is iterative and includes an objective stopping criterion that leads to statistically similar clusters that are different from each other. Some simulations to show the empirical performance of the proposal are developed and the approach is applied to two real-life situations.


Author(s):  
N. P. Szabó ◽  
B. A. Braun ◽  
M. M. G. Abdelrahman ◽  
M. Dobróka

AbstractThe identification of lithology, fluid types, and total organic carbon content are of great priority in the exploration of unconventional hydrocarbons. As a new alternative, a further developed K-means type clustering method is suggested for the evaluation of shale gas formations. The traditional approach of cluster analysis is mainly based on the use of the Euclidean distance for grouping the objects of multivariate observations into different clusters. The high sensitivity of the L2 norm applied to non-Gaussian distributed measurement noises is well-known, which can be reduced by selecting a more suitable norm as distance metrics. To suppress the harmful effect of non-systematic errors and outlying data, the Most Frequent Value method as a robust statistical estimator is combined with the K-means clustering algorithm. The Cauchy-Steiner weights calculated by the Most Frequent Value procedure is applied to measure the weighted distance between the objects, which improves the performance of cluster analysis compared to the Euclidean norm. At the same time, the centroids are also calculated as a weighted average (using the Most Frequent Value method), instead of applying arithmetic mean. The suggested statistical method is tested using synthetic datasets as well as observed wireline logs, mud-logging data and core samples collected from the Barnett Shale Formation, USA. The synthetic experiment using extremely noisy well logs demonstrates that the newly developed robust clustering procedure is able to separate the geological-lithological units in hydrocarbon formations and provide additional information to standard well log analysis. It is also shown that the Cauchy-Steiner weighted cluster analysis is affected less by outliers, which allows a more efficient processing of poor-quality wireline logs and an improved evaluation of shale gas reservoirs.


2012 ◽  
Vol 78 (6) ◽  
pp. 1917-1929 ◽  
Author(s):  
Marius Dybwad ◽  
Per Einar Granum ◽  
Per Bruheim ◽  
Janet Martha Blatny

ABSTRACTThe reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization–time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the generaBacillus,Micrococcus, andStaphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 699-713
Author(s):  
Noah A Rosenberg ◽  
Terry Burke ◽  
Kari Elo ◽  
Marcus W Feldman ◽  
Paul J Freidlin ◽  
...  

Abstract We tested the utility of genetic cluster analysis in ascertaining population structure of a large data set for which population structure was previously known. Each of 600 individuals representing 20 distinct chicken breeds was genotyped for 27 microsatellite loci, and individual multilocus genotypes were used to infer genetic clusters. Individuals from each breed were inferred to belong mostly to the same cluster. The clustering success rate, measuring the fraction of individuals that were properly inferred to belong to their correct breeds, was consistently ~98%. When markers of highest expected heterozygosity were used, genotypes that included at least 8–10 highly variable markers from among the 27 markers genotyped also achieved >95% clustering success. When 12–15 highly variable markers and only 15–20 of the 30 individuals per breed were used, clustering success was at least 90%. We suggest that in species for which population structure is of interest, databases of multilocus genotypes at highly variable markers should be compiled. These genotypes could then be used as training samples for genetic cluster analysis and to facilitate assignments of individuals of unknown origin to populations. The clustering algorithm has potential applications in defining the within-species genetic units that are useful in problems of conservation.


2011 ◽  
Vol 3 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Mari Feli Gonzalez ◽  
David Facal ◽  
Ana Belen Navarro ◽  
Arjan Geven ◽  
Manfred Tscheligi ◽  
...  

The HERMES Cognitive Care and Guidance for Active Aging project proposes an integrated approach to cognitive assistance, promoting the autonomy of elderly users through pervasive technology. This work aims to describe elderly people’s opinions when they are presented scenarios developed in this project. Two focus groups were organized in Austria and Spain with a view to collecting their impressions about the way in which the technological device can cover their needs; complementarily, a second session was conducted including a quantitative questionnaire. Although some participants were reluctant to use the technology, they welcomed some functionalities of the HERMES system and they considered that using them can help them to become familiar with them. Usefulness, usability, and use of real-life information for functionalities such as cognitive games are considered to be key areas of the project. This evaluation has provided the developers of the system with meaningful information to improve it and it guarantees that the system addresses elderly people’s needs.


Sign in / Sign up

Export Citation Format

Share Document