2021 ◽  
Vol 16 ◽  
Author(s):  
Dan Lin ◽  
Jialin Yu ◽  
Ju Zhang ◽  
Huan He ◽  
Xinyun Guo ◽  
...  

Background: Anti-inflammatory peptides (AIPs) are potent therapeutic agents for inflammatory and autoimmune disorders due to their high specificity and minimal toxicity under normal conditions. Therefore, it is greatly significant and beneficial to identify AIPs for further discovering novel and efficient AIPs-based therapeutics. Recently, three computational approaches, which can effectively identify potential AIPs, have been developed based on machine learning algorithms. However, there are several challenges with the existing three predictors. Objective: A novel machine learning algorithm needs to be proposed to improve the AIPs prediction accuracy. Methods: This study attempts to improve the recognition of AIPs by employing multiple primary sequence-based feature descriptors and an efficient feature selection strategy. By sorting features through four enhanced minimal redundancy maximal relevance (emRMR) methods, and then attaching seven different classifiers wrapper methods based on the sequential forward selection algorithm (SFS), we proposed a hybrid feature selection technique emRMR-SFS to optimize feature vectors. Furthermore, by evaluating seven classifiers trained with the optimal feature subset, we developed the extremely randomized tree (ERT) based predictor named PREDAIP for identifying AIPs. Results: We systematically compared the performance of PREDAIP with the existing tools on an independent test dataset. It demonstrates the effectiveness and power of the PREDAIP. The correlation criteria used in emRMR would affect the selection results of the optimal feature subset at the SFS-wrapper stage, which justifies the necessity for considering different correlation criteria in emRMR. Conclusion: We expect that PREDAIP will be useful for the high-throughput prediction of AIPs and the development of AIPs therapeutics.


2021 ◽  
Vol 115 ◽  
pp. 641-658
Author(s):  
Bander Ali Saleh Al-rimy ◽  
Mohd Aizaini Maarof ◽  
Mamoun Alazab ◽  
Syed Zainudeen Mohd Shaid ◽  
Fuad A. Ghaleb ◽  
...  

Author(s):  
Hua Tang ◽  
Chunmei Zhang ◽  
Rong Chen ◽  
Po Huang ◽  
Chenggang Duan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1238
Author(s):  
Supanat Chamchuen ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Puripong Suthisopapan ◽  
Pirat Khunkitti

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified to prevent the degradation of system reliability. This work proposes a PQD classification using a novel algorithm, comprised of the artificial bee colony (ABC) and the particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as the feature selection algorithm. The proposed adaptive technique is applied to a combination of ABC and PSO algorithms, and then used as the feature selection algorithm. A discrete wavelet transform is used as the feature extraction method, and a probabilistic neural network is used as the classifier. We found that the highest classification accuracy (99.31%) could be achieved through nine optimally selected features out of all 72 extracted features. Moreover, the proposed PQD classification system demonstrated high performance in a noisy environment, as well as the real distribution system. When comparing the presented PQD classification system’s performance to previous studies, PQD classification accuracy using adaptive ABC-PSO as the optimal feature selection algorithm is considered to be at a high-range scale; therefore, the adaptive ABC-PSO algorithm can be used to classify the PQD in a practical electrical distribution system.


Sign in / Sign up

Export Citation Format

Share Document