Tangible Landscape: Simulation of Estimation of Wildfire Spread In Arjuno Mountain Tahura R. Soerjo Region

Author(s):  
Adhi Isti Febriandhika ◽  
Cendi Tito Rahman ◽  
Fatwa Ramdani ◽  
Mochamad Chandra Saputra
Keyword(s):  
2021 ◽  
Vol 11 (15) ◽  
pp. 7046
Author(s):  
Jorge Francisco Ciprián-Sánchez ◽  
Gilberto Ochoa-Ruiz ◽  
Lucile Rossi ◽  
Frédéric Morandini

Wildfires stand as one of the most relevant natural disasters worldwide, particularly more so due to the effect of climate change and its impact on various societal and environmental levels. In this regard, a significant amount of research has been done in order to address this issue, deploying a wide variety of technologies and following a multi-disciplinary approach. Notably, computer vision has played a fundamental role in this regard. It can be used to extract and combine information from several imaging modalities in regard to fire detection, characterization and wildfire spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based fire segmentation, showing very promising results. However, it is currently unclear whether the architecture of a model, its loss function, or the image type employed (visible, infrared, or fused) has the most impact on the fire segmentation results. In the present work, we evaluate different combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to identify the parameters most relevant to improve the segmentation results. We benchmark them to identify the top-performing ones and compare them to traditional fire segmentation techniques. Finally, we evaluate if the addition of attention modules on the best performing architecture can further improve the segmentation results. To the best of our knowledge, this is the first work that evaluates the impact of the architecture, loss function, and image type in the performance of DL-based wildfire segmentation models.


2021 ◽  
Author(s):  
Martín Senande-Rivera ◽  
Gonzalo Miguez-Macho

<p>Extreme wildfire events associated with strong pyroconvection have gained the attention of the scientific community and the society in recent years. Strong convection in the fire plume can influence fire behaviour, as downdrafts can cause abrupt variations in surface wind direction and speed that can result in bursts of unexpected fire propagation. Climate change is expected to increase the length of the fire season and the extreme wildfire potential, so the risk of pyroconvection occurence might be also altered. Here, we analyse atmospheric stability and near-surface fire weather conditions in the Iberian Peninsula at the end of the 21st century to assess the projected changes in pyroconvective risk during favourable weather conditions for wildfire spread.  </p>


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 102102-102112
Author(s):  
Nikos Bogdos ◽  
Elias S. Manolakos
Keyword(s):  

2020 ◽  
Vol 29 (2) ◽  
pp. 160 ◽  
Author(s):  
Frédéric Allaire ◽  
Jean-Baptiste Filippi ◽  
Vivien Mallet

Numerical simulations of wildfire spread can provide support in deciding firefighting actions but their predictive performance is challenged by the uncertainty of model inputs stemming from weather forecasts, fuel parameterisation and other fire characteristics. In this study, we assign probability distributions to the inputs and propagate the uncertainty by running hundreds of Monte Carlo simulations. The ensemble of simulations is summarised via a burn probability map whose evaluation based on the corresponding observed burned surface is not obvious. We define several properties and introduce probabilistic scores that are common in meteorological applications. Based on these elements, we evaluate the predictive performance of our ensembles for seven fires that occurred in Corsica from mid-2017 to early 2018. We obtain fair performance in some of the cases but accuracy and reliability of the forecasts can be improved. The ensemble generation can be accomplished in a reasonable amount of time and could be used in an operational context provided that sufficient computational resources are available. The proposed probabilistic scores are also appropriate in a calibration process to improve the ensembles.


Ecosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. e02443 ◽  
Author(s):  
Nicholas A. Povak ◽  
Paul F. Hessburg ◽  
R. Brion Salter

2018 ◽  
Vol 27 (4) ◽  
pp. 257 ◽  
Author(s):  
O. Rios ◽  
W. Jahn ◽  
E. Pastor ◽  
M. M. Valero ◽  
E. Planas

Local wind fields that account for topographic interaction are a key element for any wildfire spread simulator. Currently available tools to generate near-surface winds with acceptable accuracy do not meet the tight time constraints required for data-driven applications. This article presents the specific problem of data-driven wildfire spread simulation (with a strategy based on using observed data to improve results), for which wind diagnostic models must be run iteratively during an optimisation loop. An interpolation framework is proposed as a feasible alternative to keep a positive lead time while minimising the loss of accuracy. The proposed methodology was compared with the WindNinja solver in eight different topographic scenarios with multiple resolutions and reference – pre-run– wind map sets. Results showed a major reduction in computation time (~100 times once the reference fields are available) with average deviations of 3% in wind speed and 3° in direction. This indicates that high-resolution wind fields can be interpolated from a finite set of base maps previously computed. Finally, wildfire spread simulations using original and interpolated maps were compared showing minimal deviations in the fire shape evolution. This methodology may have an important effect on data assimilation frameworks and probabilistic risk assessment where high-resolution wind fields must be computed for multiple weather scenarios.


2015 ◽  
Vol 51 ◽  
pp. 2287-2296 ◽  
Author(s):  
Tiziano Ghisu ◽  
Bachisio Arca ◽  
Grazia Pellizzaro ◽  
Pierpaolo Duce

2020 ◽  
Author(s):  
Liliana Del Giudice ◽  
Bachisio Arca ◽  
Peter Robichaud ◽  
Alan Ager ◽  
Annalisa Canu ◽  
...  

<p>High severity wildfires can have many negative impacts on ecosystems. In this work, we coupled wildfire spread and erosion prediction modelling to evaluate the effects of fuel reduction treatments in preventing soil runoff in Mediterranean ecosystems. The study was carried out in a 68,000-ha forest area located in Northern Sardinia, Italy. We treated 15% of the study area, and compared no-treatment conditions vs alternative strategic fuel treatments. We estimated pre- and post-treatment fire behaviour by using the Minimum Travel Time (MTT) fire spread algorithm. For each fuel treatment scenario, we simulated 25,000 wildfires replicating the historic weather conditions associated with severe wildfires in the area. Sediment delivery was then estimated using the Erosion Risk Management Tool (ERMiT). Our results showed how post-fire sediment delivery varied among and within the fuel treatment scenarios tested. The treatments realized nearby roads were the most efficient. We also evaluated the effects of other factors such as exceedance probability, time since fire, slope, fire severity and vegetation type on post-fire sediment delivery. This work provides a quantitative assessment approach to inform and optimize proactive risk management activities aimed at reducing post-fire erosion in Mediterranean areas.</p>


Sign in / Sign up

Export Citation Format

Share Document