A novel approach for increasing security and data embedding capacity in images for data hiding applications

Author(s):  
F. Alturki ◽  
R. Mersereau
2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan-Yu Tsai

This study adopts a triangle subdivision scheme to achieve reversible data embedding. The secret message is embedded into the newly added vertices. The topology of added vertex is constructed by connecting it with the vertices of located triangle. For further raising the total embedding capacity, a recursive subdivision mechanism, terminated by a given criterion, is employed. Finally, a principal component analysis can make the stego model against similarity transformation and vertex/triangle reordering attacks. Our proposed algorithm can provide a high and adjustable embedding capacity with reversibility. The experimental results demonstrate the feasibility of our proposed algorithm.


Cryptography ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 21 ◽  
Author(s):  
Amit Phadikar ◽  
Poulami Jana ◽  
Himadri Mandal

In this work, a reversible watermarking technique is proposed for DICOM (Digital Imaging and Communications in Medicine) image that offers high embedding capacity (payload), security and fidelity of the watermarked image. The goal is achieved by embedding watermark based on companding in lifting based discrete wavelet transform (DWT) domain. In the embedding process, the companding technique is used to increase the data hiding capacity. On the other hand, a simple linear function is used in companding to make the scheme easy to implement, and content dependant watermark is used to make the scheme robust to collusion operation. Moreover, unlike previously proposed reversible watermarking techniques, this novel approach does not embed the location map in the host image that ultimately helps to achieve high fidelity of the watermarked image. The advantage of the proposed scheme is demonstrated by simulation results and also compared with selected other related schemes.


Author(s):  
Mona Nafari ◽  
Mansour Nejati Jahromi ◽  
Gholam Hosein Sheisi

In this paper, a reversible data hiding scheme has been proposed which is based on correlation of subsample images. The proposed method modifies the blocks of sub-sampled image to prepare vacant positions for data embedding. The PSNR of the stego image produced by the proposed method is guaranteed to be above 47.5 dB, while the embedding capacity is at least, almost 6.5 times higher than that of the Kim et al. techniques with the same PSNR. This technique has the capability to control the capacity-PSNR. Experimental results support that the proposed method exploits the correlation of blocked sub-sampled image outperforms the prior works in terms of larger capacity and stego image quality. On various test images, the authors demonstrate the validity of the proposed method by comparing it with other existing reversible data hiding algorithms.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 387
Author(s):  
Tsung-Chih Hsiao ◽  
Dong-Xu Liu ◽  
Tzer-Long Chen ◽  
Chih-Cheng Chen

At present, the Sudoku matrix, turtle shell matrix, and octagonal matrix have been put forward according to the magic matrix-based data hiding methods. Moreover, the magic matrices to be designed depend on the size of the embedding capacity. In addition, by determining the classification of points of pixel pairs after applying a magic matrix and by determining the traversal area, the average peak signal-to-noise ratio (PSNR) can be improved. Therefore, this topic intends to propose a data hiding method based on a 16 × 16 Sudoku matrix by using the 16 × 16 Sudoku matrix and extending it to a double-layer magic matrix. Low-cost data embedding methods are also studied, in order to improve the PSNR and maintain good image quality with the same embedding capacity.


2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 917
Author(s):  
Limengnan Zhou ◽  
Hongyu Han ◽  
Hanzhou Wu

Reversible data hiding (RDH) has become a hot spot in recent years as it allows both the secret data and the raw host to be perfectly reconstructed, which is quite desirable in sensitive applications requiring no degradation of the host. A lot of RDH algorithms have been designed by a sophisticated empirical way. It is not easy to extend them to a general case, which, to a certain extent, may have limited their wide-range applicability. Therefore, it motivates us to revisit the conventional RDH algorithms and present a general framework of RDH in this paper. The proposed framework divides the system design of RDH at the data hider side into four important parts, i.e., binary-map generation, content prediction, content selection, and data embedding, so that the data hider can easily design and implement, as well as improve, an RDH system. For each part, we introduce content-adaptive techniques that can benefit the subsequent data-embedding procedure. We also analyze the relationships between these four parts and present different perspectives. In addition, we introduce a fast histogram shifting optimization (FastHiSO) algorithm for data embedding to keep the payload-distortion performance sufficient while reducing the computational complexity. Two RDH algorithms are presented to show the efficiency and applicability of the proposed framework. It is expected that the proposed framework can benefit the design of an RDH system, and the introduced techniques can be incorporated into the design of advanced RDH algorithms.


2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


Sign in / Sign up

Export Citation Format

Share Document