Imputation methods to deal with missing values when data mining trauma injury data

Author(s):  
K.I. Penny ◽  
T. Chesney
Author(s):  
V. Jinubala ◽  
P. Jeyakumar

Data Mining is an emerging research field in the analysis of agricultural data. In fact the most important problem in extracting knowledge from the agriculture data is the missing values of the attributes in the selected data set. If such deficiencies are there in the selected data set then it needs to be cleaned during preprocessing of the data in order to obtain a functional data. The main objective of this paper is to analyse the effectiveness of the various imputation methods in producing a complete data set that can be more useful for applying data mining techniques and presented a comparative analysis of the imputation methods for handling missing values. The pest data set of rice crop collected throughout Maharashtra state under Crop Pest Surveillance and Advisory Project (CROPSAP) during 2009-2013 was used for analysis. The different methodologies like Deleting of rows, Mean & Median, Linear regression and Predictive Mean Matching were analysed for Imputation of Missing values. The comparative analysis shows that Predictive Mean Matching Methodology was better than other methods and effective for imputation of missing values in large data set.


Author(s):  
Thomas Chesney ◽  
Kay Penny ◽  
Peter Oakley ◽  
Simon Davies ◽  
David Chesney ◽  
...  

2013 ◽  
Vol 11 (7) ◽  
pp. 2779-2786
Author(s):  
Rahul Singhai

One relevant problem in data preprocessing is the presence of missing data that leads the poor quality of patterns, extracted after mining. Imputation is one of the widely used procedures that replace the missing values in a data set by some probable values. The advantage of this approach is that the missing data treatment is independent of the learning algorithm used. This allows the user to select the most suitable imputation method for each situation. This paper analyzes the various imputation methods proposed in the field of statistics with respect to data mining. A comparative analysis of three different imputation approaches which can be used to impute missing attribute values in data mining are given that shows the most promising method. An artificial input data (of numeric type) file of 1000 records is used to investigate the performance of these methods. For testing the significance of these methods Z-test approach were used.


2017 ◽  
Vol 10 (04) ◽  
pp. 773-779
Author(s):  
V.B. Kamble ◽  
S.N. Deshmukh

Presence of missing values in the dataset leads to difficult for data analysis in data mining task. In this research work, student dataset is taken contains marks of four different subjects in engineering college. Mean, Mode, Median Imputation were used to deal with challenges of incomplete data. By using MSE and RMSE on dataset using with proposed Method and imputation methods like Mean, Mode, and Median Imputation on the dataset and found out to be values of Mean Squared Error and Root Mean Squared Error for the dataset. Accuracy also found out to be using Proposed Method with Imputation Technique. Experimental observation it was found that, MSE and RMSE gradually decreases when size of the databases is gradually increases by using proposed Method. Also MSE and RMSE gradually increase when size of the databases is gradually increases by using simple imputation technique. Accuracy is also increases with increases size of the databases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Pooja Rani ◽  
Rajneesh Kumar ◽  
Anurag Jain

PurposeDecision support systems developed using machine learning classifiers have become a valuable tool in predicting various diseases. However, the performance of these systems is adversely affected by the missing values in medical datasets. Imputation methods are used to predict these missing values. In this paper, a new imputation method called hybrid imputation optimized by the classifier (HIOC) is proposed to predict missing values efficiently.Design/methodology/approachThe proposed HIOC is developed by using a classifier to combine multivariate imputation by chained equations (MICE), K nearest neighbor (KNN), mean and mode imputation methods in an optimum way. Performance of HIOC has been compared to MICE, KNN, and mean and mode methods. Four classifiers support vector machine (SVM), naive Bayes (NB), random forest (RF) and decision tree (DT) have been used to evaluate the performance of imputation methods.FindingsThe results show that HIOC performed efficiently even with a high rate of missing values. It had reduced root mean square error (RMSE) up to 17.32% in the heart disease dataset and 34.73% in the breast cancer dataset. Correct prediction of missing values improved the accuracy of the classifiers in predicting diseases. It increased classification accuracy up to 18.61% in the heart disease dataset and 6.20% in the breast cancer dataset.Originality/valueThe proposed HIOC is a new hybrid imputation method that can efficiently predict missing values in any medical dataset.


Author(s):  
Miroslav Hudec ◽  
Miljan Vučetić ◽  
Mirko Vujošević

Data mining methods based on fuzzy logic have been developed recently and have become an increasingly important research area. In this chapter, the authors examine possibilities for discovering potentially useful knowledge from relational database by integrating fuzzy functional dependencies and linguistic summaries. Both methods use fuzzy logic tools for data analysis, acquiring, and representation of expert knowledge. Fuzzy functional dependencies could detect whether dependency between two examined attributes in the whole database exists. If dependency exists only between parts of examined attributes' domains, fuzzy functional dependencies cannot detect its characters. Linguistic summaries are a convenient method for revealing this kind of dependency. Using fuzzy functional dependencies and linguistic summaries in a complementary way could mine valuable information from relational databases. Mining intensities of dependencies between database attributes could support decision making, reduce the number of attributes in databases, and estimate missing values. The proposed approach is evaluated with case studies using real data from the official statistics. Strengths and weaknesses of the described methods are discussed. At the end of the chapter, topics for further research activities are outlined.


2008 ◽  
pp. 2943-2963
Author(s):  
Malcolm J. Beynon

The efficacy of data mining lies in its ability to identify relationships amongst data. This chapter investigates that constraining this efficacy is the quality of the data analysed, including whether the data is imprecise or in the worst case incomplete. Through the description of Dempster-Shafer theory (DST), a general methodology based on uncertain reasoning, it argues that traditional data mining techniques are not structured to handle such imperfect data, instead requiring the external management of missing values, and so forth. One DST based technique is classification and ranking belief simplex (CaRBS), which allows intelligent data mining through the acceptance of missing values in the data analysed, considering them a factor of ignorance, and not requiring their external management. Results presented here, using CaRBS and a number of simplex plots, show the effect of managing and not managing of imperfect data.


Sign in / Sign up

Export Citation Format

Share Document