Fault Detection of Flight Control System Based on H∞ / H_ Nonlinear Filter

Author(s):  
Fawei Wang ◽  
Ming Hao ◽  
Qiangsheng Yun
Author(s):  
C. H. Lo ◽  
Eric H. K. Fung ◽  
Y. K. Wong

There are various possible failures, like, actuator, sensor, or structural, which can occur on a sophisticated modern aircraft. In certain situations the need for an automatic fault detection system provides additional information about the status of the aircraft to assist pilots to compensate for failures. In this paper, we develop an intelligent technique based on fuzzy-genetic algorithm for automatically detecting failures in flight control system. The fuzzy-genetic algorithm is proposed to construct the automatic fault detection system for monitoring aircraft behaviors. Fuzzy system is employed to estimates the times and types of actuator failure. Genetic algorithms are used to generate an optimal fuzzy rule set based on the training data. The optimization capability of genetic algorithms provides and efficient and effective way to generate optimal fuzzy rules. Different types of actuator failure can be detected by the fuzzy-genetic algorithm based automatic fault detection system after tuning its rule table. Simulations with different actuator failures of the non-linear F-16 aircraft model are conducted to appraise the performance of the proposed automatic fault detection system.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gulay Unal

Purpose The purpose of this study is to present a new integrated structure for a fault tolerant aircraft control system because fault diagnosis of flight control systems is extremely important in obtaining healthy flight. An approach to detect and isolate aircraft sensor faults is proposed, and a new integrated structure for a fault tolerant aircraft control system is presented. Design/methodology/approach As disturbance and sensor faults are mixed together in a flight control system, it is difficult to isolate any fault from the disturbance. This paper proposes a robust unknown input observer for state estimation and fault detection as well as isolation using fuzzy logic. Findings The dedicated observer scheme (DOS) and generalized observer scheme (GOS) are used for fault detection and isolation in an observer-based approach. Using the DOS, it has been shown through simulation that sensor fault detection and isolation can be made, but here the threshold value must be well chosen; if not, the faulty sensor cannot be correctly isolated. On the other hand, the GOS is more usable and flexible than the DOS and allows isolation of faults more correctly and for a fuzzy logic-based controller to be used to realize fault isolation completely. Originality/value The fuzzy logic approach applied to the flight control system adds an important key for sensor fault isolation because it reduces the effect of false alarms and allows the identification of different kinds of sensor faults. The proposed approach can be used for similar systems.


2012 ◽  
Vol 45 (20) ◽  
pp. 1358-1363 ◽  
Author(s):  
Bálint Vanek ◽  
Zoltán Szabó ◽  
András Edelmayer ◽  
Jázsef Bokor

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 771 ◽  
Author(s):  
Kai Guo ◽  
Liansheng Liu ◽  
Shuhui Shi ◽  
Datong Liu ◽  
Xiyuan Peng

Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight security, in which the flight control system conducts real-time control for the vehicles relying on the sensing information from sensors, and erroneous sensor data will lead to false flight control commands, causing undesirable consequences. However, because of the scarcity of faulty instances, it still remains a challenging issue for flight sensor fault detection. The one-class support vector machine approach is a favorable classifier without negative samples, however, it is sensitive to outliers that deviate from the center and lacks a mechanism for coping with them. The compactness of its decision boundary is influenced, leading to the degradation of detection rate. To deal with this issue, an optimized one-class support vector machine approach regulated by local density is proposed in this paper, which regulates the tolerance extents of its decision boundary to the outliers according to their extent of abnormality indicated by their local densities. The application scope of the local density theory is narrowed to keep the internal instances unchanged and a rule for assigning the outliers continuous density coefficients is raised. Simulation results on a real flight control system model have proved its effectiveness and superiority.


Sign in / Sign up

Export Citation Format

Share Document