scholarly journals UAV Sensor Fault Detection Using a Classifier without Negative Samples: A Local Density Regulated Optimization Algorithm

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 771 ◽  
Author(s):  
Kai Guo ◽  
Liansheng Liu ◽  
Shuhui Shi ◽  
Datong Liu ◽  
Xiyuan Peng

Fault detection for sensors of unmanned aerial vehicles is essential for ensuring flight security, in which the flight control system conducts real-time control for the vehicles relying on the sensing information from sensors, and erroneous sensor data will lead to false flight control commands, causing undesirable consequences. However, because of the scarcity of faulty instances, it still remains a challenging issue for flight sensor fault detection. The one-class support vector machine approach is a favorable classifier without negative samples, however, it is sensitive to outliers that deviate from the center and lacks a mechanism for coping with them. The compactness of its decision boundary is influenced, leading to the degradation of detection rate. To deal with this issue, an optimized one-class support vector machine approach regulated by local density is proposed in this paper, which regulates the tolerance extents of its decision boundary to the outliers according to their extent of abnormality indicated by their local densities. The application scope of the local density theory is narrowed to keep the internal instances unchanged and a rule for assigning the outliers continuous density coefficients is raised. Simulation results on a real flight control system model have proved its effectiveness and superiority.

Author(s):  
C. H. Lo ◽  
Eric H. K. Fung ◽  
Y. K. Wong

There are various possible failures, like, actuator, sensor, or structural, which can occur on a sophisticated modern aircraft. In certain situations the need for an automatic fault detection system provides additional information about the status of the aircraft to assist pilots to compensate for failures. In this paper, we develop an intelligent technique based on fuzzy-genetic algorithm for automatically detecting failures in flight control system. The fuzzy-genetic algorithm is proposed to construct the automatic fault detection system for monitoring aircraft behaviors. Fuzzy system is employed to estimates the times and types of actuator failure. Genetic algorithms are used to generate an optimal fuzzy rule set based on the training data. The optimization capability of genetic algorithms provides and efficient and effective way to generate optimal fuzzy rules. Different types of actuator failure can be detected by the fuzzy-genetic algorithm based automatic fault detection system after tuning its rule table. Simulations with different actuator failures of the non-linear F-16 aircraft model are conducted to appraise the performance of the proposed automatic fault detection system.


Sign in / Sign up

Export Citation Format

Share Document