A suboptimal Kalman filter with fading factors for DGPS/MEMS-IMU/magnetic compass integrated navigation

Author(s):  
Jing Zhang ◽  
Zhi-hua Jin ◽  
Wei-feng Tian
2014 ◽  
Vol 568-570 ◽  
pp. 970-975 ◽  
Author(s):  
Yang Le ◽  
Xiu Feng He ◽  
Ru Ya Xiao

This paper describes an integrated MEMS IMU and GNSS system for vehicles. The GNSS system is developed to accurately estimate the vehicle azimuth, and the integrated GNSS/IMU provides attitude, position and velocity. This research is aimed at producing a low-cost integrated navigation system for vehicles. Thus, an inexpensive solid-state MEMS IMU is used to smooth the noise and to provide a high bandwidth response. The integration system with uncertain dynamics modeling and uncertain measurement noise is also studied. An interval adaptive Kalman filter is developed for such an uncertain integrated system, since the standard extended Kalman filter (SKF) is no longer applicable, and a method of adaptive factor construction with uncertain parameter is proposed for the nonlinear integrated GNSS/IMU system. The results from the actual GNSS/IMU integrated system indicate that the filtering method proposed is effective.


2021 ◽  
Vol 13 (21) ◽  
pp. 4317
Author(s):  
Peihui Yan ◽  
Jinguang Jiang ◽  
Fangning Zhang ◽  
Dongpeng Xie ◽  
Jiaji Wu ◽  
...  

Aiming at the GNSS receiver vulnerability in challenging urban environments and low power consumption of integrated navigation systems, an improved robust adaptive Kalman filter (IRAKF) algorithm with real-time performance and low computation complexity for single-frequency GNSS/MEMS-IMU/odometer integrated navigation module is proposed. The algorithm obtains the scale factor by the prediction residual, and uses it to adjust the artificially set covariance matrix of the observation vector under different GNSS solution states, so that the covariance matrix of the observation vector changes continuously with the complex scene. Then, the adaptive factor is calculated by the Mahalanobis distance to inflate the state prediction covariance matrix. In addition, the one-step prediction Kalman filter is introduced to reduce the computational complexity of the algorithm. The performance of the algorithm is verified by vehicle experiments in the challenging urban environments. Experiments show that the algorithm can effectively weaken the effects of abnormal model deviations and outliers in the measurements and improve the positioning accuracy of real-time integrated navigation. It can meet the requirements of low power consumption real-time vehicle navigation applications in the complex urban environment.


2020 ◽  
pp. 1-17
Author(s):  
Haiying Liu ◽  
Jingqi Wang ◽  
Jianxin Feng ◽  
Xinyao Wang

Abstract Visual–Inertial Navigation Systems (VINS) plays an important role in many navigation applications. In order to improve the performance of VINS, a new visual/inertial integrated navigation method, named Sliding-Window Factor Graph optimised algorithm with Dynamic prior information (DSWFG), is proposed. To bound computational complexity, the algorithm limits the scale of data operations through sliding windows, and constructs the states to be optimised in the window with factor graph; at the same time, the prior information for sliding windows is set dynamically to maintain interframe constraints and ensure the accuracy of the state estimation after optimisation. First, the dynamic model of vehicle and the observation equation of VINS are introduced. Next, as a contrast, an Invariant Extended Kalman Filter (InEKF) is constructed. Then, the DSWFG algorithm is described in detail. Finally, based on the test data, the comparison experiments of Extended Kalman Filter (EKF), InEKF and DSWFG algorithms in different motion scenes are presented. The results show that the new method can achieve superior accuracy and stability in almost all motion scenes.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Huisheng Liu ◽  
Zengcai Wang ◽  
Susu Fang ◽  
Chao Li

A constrained low-cost SINS/OD filter aided with magnetometer is proposed in this paper. The filter is designed to provide a land vehicle navigation solution by fusing the measurements of the microelectromechanical systems based inertial measurement unit (MEMS IMU), the magnetometer (MAG), and the velocity measurement from odometer (OD). First, accelerometer and magnetometer integrated algorithm is studied to stabilize the attitude angle. Next, a SINS/OD/MAG integrated navigation system is designed and simulated, using an adaptive Kalman filter (AKF). It is shown that the accuracy of the integrated navigation system will be implemented to some extent. The field-test shows that the azimuth misalignment angle will diminish to less than 1°. Finally, an outliers detection algorithm is studied to estimate the velocity measurement bias of the odometer. The experimental results show the enhancement in restraining observation outliers that improves the precision of the integrated navigation system.


2013 ◽  
Vol 341-342 ◽  
pp. 896-900
Author(s):  
Bao Jiang Sun ◽  
Yue Xu

Describes briefly ultrasonic positioning system (UPS) and digital magnetic compass (DMC) heading measurement principle,analyzed the advantages and disadvantages of each option. To improve the accuracy of the heading measurement, As the theoretical basis of adaptive Kalman filter, designed a kind of ups and dmc integrated navigation system. Based on both real measurement data, made a simulation experiment and confirmed the feasibility of the navigation system.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


Sign in / Sign up

Export Citation Format

Share Document