Ultrawide-Band SAW Devices Using SH0 Mode Wave with Increased Velocity for 5G Front-Ends

Author(s):  
Hongyan Zhou ◽  
Shibin Zhang ◽  
Jinbo Wu ◽  
Pengcheng Zheng ◽  
Liping Zhang ◽  
...  
Keyword(s):  
Author(s):  
K. Uehara ◽  
C.-M. Yang ◽  
T. Furusho ◽  
S.-K. Kim ◽  
S. Kameda ◽  
...  
Keyword(s):  

Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


2005 ◽  
Vol 2 (2) ◽  
pp. 79
Author(s):  
Mohd Khairul Mohd Salleh ◽  
Mohamad Syukri Suhaili ◽  
Zuhani Ismail ◽  
Zaiki Awang

A simple design of a metallic circular cross-sectional air-filled cavity is presented. Two probes of varied lengths are used to excite TE112-mode wave into the cavity to give a resonant frequency of 5.86 GHz. The experiments show that the resonant frequency of the cavity resonator decreases as the lengths of the probes are increased. The shortest probe in the range of study gives the closest resonant frequency to the one desired.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 303
Author(s):  
Giovanni Gugliandolo ◽  
Zlatica Marinković ◽  
Giuseppe Campobello ◽  
Giovanni Crupi ◽  
Nicola Donato

Nowadays, surface acoustic wave (SAW) resonators are attracting growing attention, owing to their widespread applications in various engineering fields, such as electronic, telecommunication, automotive, chemical, and biomedical engineering. A thorough assessment of SAW performance is a key task for bridging the gap between commercial SAW devices and practical applications. To contribute to the accomplishment of this crucial task, the present paper reports the findings of a new comparative study that is based on the performance evaluation of different commercial SAW resonators by using scattering (S-) parameter measurements coupled with a Lorentzian fitting and an accurate modelling technique for the straightforward extraction of a lumped-element equivalent-circuit representation. The developed investigation thus provides ease and reliability when choosing the appropriate commercial device, depending on the requirements and constraints of the given sensing application. This paper deals with the performance evaluation of commercial surface acoustic wave (SAW) resonators by means of scattering (S-) parameter measurements and an equivalent-circuit model extracted using a reliable modeling procedure. The studied devices are four TO-39 packaged two-port resonators with different nominal operating frequencies: 418.05, 423.22, 433.92, and 915 MHz. The S-parameter characterization was performed locally around the resonant frequencies of the tested SAW resonators by using an 8753ES Agilent vector network analyzer (VNA) and a home-made calibration kit. The reported measurement-based study has allowed for the development of a comprehensive and detailed comparative analysis of the performance of the investigated SAW devices. The characterization and modelling procedures are fully automated with a user-friendly graphical user interface (GUI) developed in the Python environment, thereby making the experimental analysis faster and more efficient.


1884 ◽  
Vol 17 (436supp) ◽  
pp. 6956-6956
Keyword(s):  

2021 ◽  
pp. 412990
Author(s):  
Saad Amara ◽  
Fares Kanouni ◽  
Farouk Laidoudi ◽  
Khaled Bouamama

Sign in / Sign up

Export Citation Format

Share Document