High performance parametric design optimization of RF devices

Author(s):  
George Stantchev ◽  
Simon Cooke ◽  
John Petillo ◽  
Serguei Ovtchinnikov ◽  
Alex Burke ◽  
...  
Author(s):  
Myung-Jin Choi ◽  
Min-Geun Kim ◽  
Seonho Cho

We developed a shape-design optimization method for the thermo-elastoplasticity problems that are applicable to the welding or thermal deformation of hull structures. The point is to determine the shape-design parameters such that the deformed shape after welding fits very well to a desired design. The geometric parameters of curved surfaces are selected as the design parameters. The shell finite elements, forward finite difference sensitivity, modified method of feasible direction algorithm and a programming language ANSYS Parametric Design Language in the established code ANSYS are employed in the shape optimization. The objective function is the weighted summation of differences between the deformed and the target geometries. The proposed method is effective even though new design variables are added to the design space during the optimization process since the multiple steps of design optimization are used during the whole optimization process. To obtain the better optimal design, the weights are determined for the next design optimization, based on the previous optimal results. Numerical examples demonstrate that the localized severe deviations from the target design are effectively prevented in the optimal design.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahdi Valitabar ◽  
Mohammadjavad Mahdavinejad ◽  
Henry Skates ◽  
Peiman Pilechiha

PurposeThe aim of this paper is to present a parametric design method to generate optimum adaptive facades regarding occupants' comfort and building energy criteria. According to the literature review, the following questions have arisen to address the research gaps: Is it possible to have the outside view throughout the whole year without discomfort glare by utilising adaptive solar facades (ASFs)? How can architects integrate both view quality and quantity into ASF design? What is the impact of dynamic vertical shading systems mounted on south facades on the outside view, occupants' visual comfort and operational energy? How can we evaluate the view quantity through multi-layer shading systems?Design/methodology/approachIn recent years, there is a surge in demand for fully glazed buildings, motivating both architects and scholars to explore novel ideas for designing adaptive solar facades. Nevertheless, the view performance of such systems has not been fully explored especially when it comes to the effect of dynamic vertical shading systems mounted on south facades. This fact clarifies the need to conduct more research in this field by taking into account the window view and natural light. Consequently, a simulation research is carried out to investigate the impact of a dynamic shading system with three vertical slats used on the south facade of a single office room located in Tehran, on both view quality and quantity, visual comfort and operational energy. The research attempts to reach a balance between the occupant's requirements and building energy criteria through a multi-objective optimisation. The distinctive feature of the proposed method is generating some optimum shading which could only cover the essential parts of the window area. It was detected from the simulation results that the usage of a dynamic vertical shading system with multi slats for south facades compared to common Venetian blinds can firstly, provide four times more view quantity. Secondly, the view quality is significantly improved through enabling occupants to enjoy the sky layer the entire year. Finally, twice more operational energy can be saved while more natural light can enter the indoor environment without glare. The final outcome of this research contributes toward designing high-performance adaptive solar facades.FindingsThis paper proposes a new metric to evaluate the view quantity through a multi-layer shading system. The proposed method makes it clear that the usage of dynamic vertical shading systems with multi-layers mounted on south facades can bring many benefits to both occupants and building energy criteria. The proposed method could (1) provide four times more view quantity; (2) improve view quality by enabling occupants to watch the sky layer throughout the whole year; (3) slash the operational energy by twice; (4) keep the daylight glare probability (DGP) value in the imperceptible range.Research limitations/implicationsThe research limitations that should be acknowledged are ignoring the impact of the adjacent building on sunlight reflection, which could cause discomfort glare issues. Another point regarding the limitations of the proposed optimisation method is the impact of vertical shading systems on users' visual interests. A field study ought to be conducted to determine which one could provide the more desirable outside view: a vertical or horizontal the view. Research on the view performance of ASFs, especially their impact on the quality of view, is sorely lacking.Originality/valueThis paper (1) analyses the performance of dynamic vertical shadings on south facades; (2) evaluates outside view through multi-layer shading systems; and (3) integrates both view quality and quantity into designing adaptive solar facades.


2000 ◽  
Author(s):  
D.-J. Yao ◽  
C.-J. Kim ◽  
G. Chen

Abstract Thin-film thermoelectric devices have potentially higher efficiency than bulk ones due to quantum and classical size effects of electrons and phonons. In this paper, we discuss the design of thin-film thermoelectric microcoolers for achieving high performance. The devices considered are membrane structures based on electron transport along the film plane. A model is developed to include the effects of heat loss and leg shape. Design optimization is performed based on the modeling results.


2013 ◽  
Vol 10 (1) ◽  
pp. 40-47 ◽  
Author(s):  
Aparna Aravelli ◽  
Singiresu S. Rao ◽  
Hari K. Adluru

Increased heat generation in semiconductor devices for demanding applications leads to the investigation of highly efficient cooling solutions. Effective options for thermal management include passing of cooling liquid through the microchannel heat sink and using highly conductive materials. In the author's previous work, experimental and computational analyses were performed on LTCC substrates using embedded silver vias and silver columns forming microchannels. This novel technique of embedding silver vias along with forced convection using a coolant resulted in higher heat transfer rates. The present work investigates the design optimization of this cooling system (microheat exchanger) using systems optimization theory. A new multiobjective optimization problem was formulated for the heat transfer in the LTCC model using the log mean temperature difference (LMTD) method of heat exchangers. The goal is to maximize the total heat transferred and to minimize the coolant pumping power. Structural and thermal design variables are considered to meet the manufacturability and energy requirements. Pressure loss and volume of the silver metal are used as constraints. A hybrid optimization technique using sequential quadratic programming (SQP) and branch and bound method of integer programming has been developed to solve the microheat exchanger problem. The optimal design is presented and sensitivity analysis results are discussed.


Sign in / Sign up

Export Citation Format

Share Document