Direct growth method of carbon nanotubes onto a tungsten tip for field emitter fabrication

Author(s):  
Hideki Sato ◽  
Koichi Ikesugi ◽  
Hisanori Kanayama ◽  
Kazuo Kajiwara ◽  
Kochi Hata
2014 ◽  
Vol 93 ◽  
pp. 164-167 ◽  
Author(s):  
Joon Won Lim ◽  
Atta Ul Haq ◽  
Sang Ouk Kim

Polymer grafting from graphitic carbon materials has been explored for several decades. Currently existing methods mostly employ harsh chemical treatment to generate defect site in graphitic carbon plane, which are used as active site for polymerization of precursors. Unfortunately, the treatment cause serious degradation of chemical structure and material properties. Here, we present a straightforward route for growth of polyaniline chain from nitrogen (N)-sites of carbon nanotubes. N site in the CNT wall initiates the polymerization of aniline monomer, which generates seamless hybrids composed of polyaniline directly grafted onto the CNT walls. The synthesized hybrids show excellent synergistic electrochemical performance, and are employed for electrodes of pseudo-capacitor. This approach offers an efficient way to obtain hybrid system consisting of conducting polymers directly grafted from graphitic dopant sites.


2010 ◽  
Vol 10 (6) ◽  
pp. 4082-4088 ◽  
Author(s):  
Michael M. Oye ◽  
Setha Yim ◽  
Alan Fu ◽  
Kevin Schwanfelder ◽  
M. Meyyappan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1882
Author(s):  
Jin Ah Lee ◽  
Won Jun Lee ◽  
Joonwon Lim ◽  
Sang Ouk Kim

Metal oxide nanoparticles supported on heteroatom-doped graphitic surfaces have been pursued for several decades for a wide spectrum of applications. Despite extensive research on functional metal oxide nanoparticle/doped carbon nanomaterial hybrids, the role of the heteroatom dopant in the hybridization process of doped carbon nanomaterials has been overlooked. Here, the direct growth of MnOx and RuOx nanoparticles in nitrogen (N)-doped sites of carbon nanotubes (NCNTs) is presented. The quaternary nitrogen (NQ) sites of CNTs actively participate in the nucleation and growth of the metal nanoparticles. The evenly distributed NQ nucleation sites mediate the generation of uniformly dispersed <10 nm diameter MnOx and RuOx nanoparticles, directly decorated on NCNT surfaces. The electrochemical performance of the resultant hybridized materials was evaluated using cyclic voltammetry. This novel hybridization method using the dopant-mediated nucleation and growth of metal oxides suggests ways that heteroatom dopants can be utilized to optimize the structure, interface and corresponding properties of graphitic carbon-based hybrid materials.


2016 ◽  
Vol 7 ◽  
pp. 809-816 ◽  
Author(s):  
Majid K Abyaneh ◽  
Pietro Parisse ◽  
Loredana Casalis

Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3244
Author(s):  
Jiuzhou Zhao ◽  
Zhenjun Li ◽  
Matthew Thomas Cole ◽  
Aiwei Wang ◽  
Xiangdong Guo ◽  
...  

The nanocone-shaped carbon nanotubes field-emitter array (NCNA) is a near-ideal field-emitter array that combines the advantages of geometry and material. In contrast to previous methods of field-emitter array, laser ablation is a low-cost and clean method that does not require any photolithography or wet chemistry. However, nanocone shapes are hard to achieve through laser ablation due to the micrometer-scale focusing spot. Here, we develop an ultraviolet (UV) laser beam patterning technique that is capable of reliably realizing NCNA with a cone-tip radius of ≈300 nm, utilizing optimized beam focusing and unique carbon nanotube–light interaction properties. The patterned array provided smaller turn-on fields (reduced from 2.6 to 1.6 V/μm) in emitters and supported a higher (increased from 10 to 140 mA/cm2) and more stable emission than their unpatterned counterparts. The present technique may be widely applied in the fabrication of high-performance CNTs field-emitter arrays.


2006 ◽  
Vol 1 (2) ◽  
pp. 112-116 ◽  
Author(s):  
S. Talapatra ◽  
S. Kar ◽  
S. K. Pal ◽  
R. Vajtai ◽  
L. Ci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document