Essential feature extraction of driving behavior using a deep learning method

Author(s):  
HaiLong Liu ◽  
Tadahiro Taniguchi ◽  
Yusuke Tanaka ◽  
Kazuhito Takenaka ◽  
Takashi Bando
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yan Wang ◽  
Hao Zhang ◽  
Zhanliang Sang ◽  
Lingwei Xu ◽  
Conghui Cao ◽  
...  

Automatic modulation recognition has successfully used various machine learning methods and achieved certain results. As a subarea of machine learning, deep learning has made great progress in recent years and has made remarkable progress in the field of image and language processing. Deep learning requires a large amount of data support. As a communication field with a large amount of data, there is an inherent advantage of applying deep learning. However, the extensive application of deep learning in the field of communication has not yet been fully developed, especially in underwater acoustic communication. In this paper, we mainly discuss the modulation recognition process which is an important part of communication process by using the deep learning method. Different from the common machine learning methods that require feature extraction, the deep learning method does not require feature extraction and obtains more effects than common machine learning.


2021 ◽  
Vol 3 (3) ◽  
pp. 276-290
Author(s):  
I Jeena Jacob ◽  
P Ebby Darney

The Internet of Things (IoT) is an ecosystem comprised of multiple devices and connections, a large number of users, and a massive amount of data. Deep learning is especially suited for these scenarios due to its appropriateness for "big data" difficulties and future concerns. Nonetheless, guaranteeing security and privacy has emerged as a critical challenge for IoT administration. In many recent cases, deep learning algorithms have proven to be increasingly efficient in performing security assessments for IoT devices without resorting to handcrafted rules. This research work integrates principal component analysis (PCA) for feature extraction with superior performance. Besides, the primary objective of this research work is to gather a comprehensive survey data on the types of IoT deployments, along with security and privacy challenges with good recognition rate. The deep learning method is performed through PCA feature extraction for improving the accuracy of the process. Our other primary goal in this study paper is to achieve a high recognition rate for IoT based image recognition. The CNN approach was trained and evaluated on the IoT image dataset for performance evaluation using multiple methodologies. The initial step would be to investigate the application of deep learning for IoT image acquisition. Additionally, when it comes to IoT image registering, the usefulness of the deep learning method has been evaluated for increasing the appropriateness of image recognition with good testing accuracy. The research discoveries on the application of deep learning in the Internet of Things (IoT) system are summarized in an image-based identification method that introduces a variety of appropriate criteria.


2017 ◽  
Vol 18 (9) ◽  
pp. 2477-2489 ◽  
Author(s):  
HaiLong Liu ◽  
Tadahiro Taniguchi ◽  
Yusuke Tanaka ◽  
Kazuhito Takenaka ◽  
Takashi Bando

2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2020 ◽  
Author(s):  
Anusha Ampavathi ◽  
Vijaya Saradhi T

UNSTRUCTURED Big data and its approaches are generally helpful for healthcare and biomedical sectors for predicting the disease. For trivial symptoms, the difficulty is to meet the doctors at any time in the hospital. Thus, big data provides essential data regarding the diseases on the basis of the patient’s symptoms. For several medical organizations, disease prediction is important for making the best feasible health care decisions. Conversely, the conventional medical care model offers input as structured that requires more accurate and consistent prediction. This paper is planned to develop the multi-disease prediction using the improvised deep learning concept. Here, the different datasets pertain to “Diabetes, Hepatitis, lung cancer, liver tumor, heart disease, Parkinson’s disease, and Alzheimer’s disease”, from the benchmark UCI repository is gathered for conducting the experiment. The proposed model involves three phases (a) Data normalization (b) Weighted normalized feature extraction, and (c) prediction. Initially, the dataset is normalized in order to make the attribute's range at a certain level. Further, weighted feature extraction is performed, in which a weight function is multiplied with each attribute value for making large scale deviation. Here, the weight function is optimized using the combination of two meta-heuristic algorithms termed as Jaya Algorithm-based Multi-Verse Optimization algorithm (JA-MVO). The optimally extracted features are subjected to the hybrid deep learning algorithms like “Deep Belief Network (DBN) and Recurrent Neural Network (RNN)”. As a modification to hybrid deep learning architecture, the weight of both DBN and RNN is optimized using the same hybrid optimization algorithm. Further, the comparative evaluation of the proposed prediction over the existing models certifies its effectiveness through various performance measures.


Sign in / Sign up

Export Citation Format

Share Document