Ensemble learning versus deep learning for Hypoxia detection in CTG signal

Author(s):  
P Riskyana Dewi Intan ◽  
M. Anwar Ma'sum ◽  
Noverina Alfiany ◽  
Wisnu Jatmiko ◽  
Aria Kekalih ◽  
...  
2021 ◽  
Vol 11 (5) ◽  
pp. 2164
Author(s):  
Jiaxin Li ◽  
Zhaoxin Zhang ◽  
Changyong Guo

X.509 certificates play an important role in encrypting the transmission of data on both sides under HTTPS. With the popularization of X.509 certificates, more and more criminals leverage certificates to prevent their communications from being exposed by malicious traffic analysis tools. Phishing sites and malware are good examples. Those X.509 certificates found in phishing sites or malware are called malicious X.509 certificates. This paper applies different machine learning models, including classical machine learning models, ensemble learning models, and deep learning models, to distinguish between malicious certificates and benign certificates with Verification for Extraction (VFE). The VFE is a system we design and implement for obtaining plentiful characteristics of certificates. The result shows that ensemble learning models are the most stable and efficient models with an average accuracy of 95.9%, which outperforms many previous works. In addition, we obtain an SVM-based detection model with an accuracy of 98.2%, which is the highest accuracy. The outcome indicates the VFE is capable of capturing essential and crucial characteristics of malicious X.509 certificates.


2021 ◽  
Author(s):  
Yangyang Tian ◽  
Qi Wang ◽  
Zhimin Guo ◽  
Huitong Zhao ◽  
Sulaiman Khan ◽  
...  

Author(s):  
Hedieh Hashem Olhosseiny ◽  
Mohammadsalar Mirzaloo ◽  
Miodrag Bolic ◽  
Hilmi R. Dajani ◽  
Voicu Groza ◽  
...  

Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 83 ◽  
Author(s):  
Giannis Haralabopoulos ◽  
Ioannis Anagnostopoulos ◽  
Derek McAuley

Sentiment analysis usually refers to the analysis of human-generated content via a polarity filter. Affective computing deals with the exact emotions conveyed through information. Emotional information most frequently cannot be accurately described by a single emotion class. Multilabel classifiers can categorize human-generated content in multiple emotional classes. Ensemble learning can improve the statistical, computational and representation aspects of such classifiers. We present a baseline stacked ensemble and propose a weighted ensemble. Our proposed weighted ensemble can use multiple classifiers to improve classification results without hyperparameter tuning or data overfitting. We evaluate our ensemble models with two datasets. The first dataset is from Semeval2018-Task 1 and contains almost 7000 Tweets, labeled with 11 sentiment classes. The second dataset is the Toxic Comment Dataset with more than 150,000 comments, labeled with six different levels of abuse or harassment. Our results suggest that ensemble learning improves classification results by 1.5 % to 5.4 % .


Author(s):  
Nassima Dif ◽  
Zakaria Elberrichi

Deep learning methods are characterized by their capacity to learn data representation compared to the traditional machine learning algorithms. However, these methods are prone to overfitting on small volumes of data. The objective of this research is to overcome this limitation by improving the generalization in the proposed deep learning framework based on various techniques: data augmentation, small models, optimizer selection, and ensemble learning. For ensembling, the authors used selected models from different checkpoints and both voting and unweighted average methods for combination. The experimental study on the lymphomas histopathological dataset highlights the efficiency of the MobileNet2 network combined with the stochastic gradient descent (SGD) optimizer in terms of generalization. The best results have been achieved by the combination of the best three checkpoint models (98.67% of accuracy). These findings provide important insights into the efficiency of the checkpoint ensemble learning method for histopathological image classification.


2020 ◽  
Vol 10 (22) ◽  
pp. 7954
Author(s):  
Lu Wang ◽  
Xin Li ◽  
Ruiheng Wang ◽  
Yang Xin ◽  
Mingcheng Gao ◽  
...  

Automated vulnerability detection is one of the critical issues in the realm of software security. Existing solutions to this problem are mostly based on features that are defined by human experts and directly lead to missed potential vulnerability. Deep learning is an effective method for automating the extraction of vulnerability characteristics. Our paper proposes intelligent and automated vulnerability detection while using deep representation learning and heterogeneous ensemble learning. Firstly, we transform sample data from source code by removing segments that are unrelated to the vulnerability in order to reduce code analysis and improve detection efficiency in our experiments. Secondly, we represent the sample data as real vectors by pre-training on the corpus and maintaining its semantic information. Thirdly, the vectors are fed to a deep learning model to obtain the features of vulnerability. Lastly, we train a heterogeneous ensemble classifier. We analyze the effectiveness and resource consumption of different network models, pre-training methods, classifiers, and vulnerabilities separately in order to evaluate the detection method. We also compare our approach with some well-known vulnerability detection commercial tools and academic methods. The experimental results show that our proposed method provides improvements in false positive rate, false negative rate, precision, recall, and F1 score.


Sign in / Sign up

Export Citation Format

Share Document