Numerical simulation of semiconductor devices: energy-transport and quantum hydrodynamic modeling

Author(s):  
A. Jungel ◽  
C. Pohl
2010 ◽  
Vol 24 (04n05) ◽  
pp. 401-409
Author(s):  
EUGENIA TULCAN-PAULESCU ◽  
DAN COMǍNESCU ◽  
MARIUS PAULESCU

This article deals with quantum hydrodynamic models (QHD) for electronic transport in semiconductor devices. Numerical simulation of ballistic diode and resonant tunneling diode is discussed. Based on overall results, it can be concluded that the considered QHD models have remarkable abilities to express the refinements of electronic transport in nanodevices.


VLSI Design ◽  
1995 ◽  
Vol 3 (2) ◽  
pp. 211-224 ◽  
Author(s):  
Edwin C. Kan ◽  
Zhiping Yu ◽  
Robert W. Dutton ◽  
Datong Chen ◽  
Umberto Ravaioli

According to different assumptions in deriving carrier and energy flux equations, macroscopic semiconductor transport models from the moments of the Boltzmann transport equation (BTE) can be divided into two main categories: the hydrodynamic (HD) model which basically follows Bløtekjer's approach [1, 2], and the Energy Transport (ET) model which originates from Strattton's approximation [3, 4]. The formulation, discretization, parametrization and numerical properties of the HD and ET models are carefully examined and compared. The well-known spurious velocity spike of the HD model in simple nin structures can then be understood from its formulation and parametrization of the thermoelectric current components. Recent progress in treating negative differential resistances with the ET model and extending the model to thermoelectric simulation is summarized. Finally, we propose a new model denoted by DUET (Dual ET)which accounts for all thermoelectric effects in most modern devices and demonstrates very good numerical properties. The new advances in applicability and computational efficiency of the ET model, as well as its easy implementation by modifying the conventional drift-diffusion (DD) model, indicate its attractiveness for numerical simulation of advanced semiconductor devices


VLSI Design ◽  
2001 ◽  
Vol 13 (1-4) ◽  
pp. 237-244 ◽  
Author(s):  
J. R. Barker

It is demonstrated that the ballistic quantum transport properties of an open quantum dot may be described by an ensemble of spatially correlated virtual classical particles moving within self-avoiding strings. The string paths correspond to ray trajectories. The strings exhibit the necessary properties of self-avoidance, interference and the non-local condition ∮mv · dr=nh. The formalism suggests that numerical simulation of quantum flows may be constructed ab initio by using the string representation.


Author(s):  
Shizuma Kaneko ◽  
Takahiro Tsukahara ◽  
Yasuo Kawaguchi

A regular pattern of turbulent and quasi-laminar fluid motion is known to appear in plane Poiseuille flow near the lowest Reynolds number for which turbulence can be sustained. We focused on this transitional structure called the turbulent stripe and investigated its energy transport process, using a direct numerical simulation. We obtained the budget for Reynolds stresses including v′w′ and w′u′. The spatial outline of the energy transport with respect to the turbulent stripe is proposed. The turbulent energy is produced in both the turbulent region and the quasi-laminar region, and the energy transfer between these two regions is found to be small.


Sign in / Sign up

Export Citation Format

Share Document