High gain compact interleaved boost converter with reduced voltage stress for PV application

Author(s):  
Kumar Abhishek Singh ◽  
Ashish Prajapati ◽  
Kalpana Chaudhary
Author(s):  
Mriganka Biswas ◽  
Somanath Majhi ◽  
Harshal Nemade

The paper presents a two-phase interleaved boost converter (IBC) providing higher step-up conversion ratio compared to the conventional IBC. The circuit consists of a crossly connected diode-capacitor cell which provides the extra boost up. The two identical capacitors of the cell are charged in parallel and discharged in series providing high voltage gain at considerably low duty ratio. Switching operations, ripple and average currents through inductors are analyzed in continuous conduction mode (CCM). Ripple in input current is also improved. The voltage stress across the semiconductor devices is less in the proposed converter. Also, boundary load condition is derived. Small-signal modeling is carried out and a control circuit is enabled in the voltage mode control framework. Power losses are analyzed and 96.53[Formula: see text] efficiency is achieved. Finally, the proposed converter is designed and implemented, and experimental results are provided.


Author(s):  
Qingchao Yang ◽  
Jingjun Lou ◽  
Shuyong Liu ◽  
Aimin Diao

2018 ◽  
Vol 225 ◽  
pp. 04010
Author(s):  
Pydikalva Padmavathi ◽  
Sudhakar Natarajan

A novel high gain voltage lift technique based transformer free non isolated boost converter is proposed with single switch operating at constant frequency in this paper. This performance of this converter is very good and high efficient compared to the conventional boost converters. The high gain is obtained by applying voltage lift cell to the quadratic boost converter. The simple structure, easy controlling and lower voltage stress. The operating principle with theoretical analysis and simulation results of proposed converter for various loads at 10 kHz frequency are discussed in this paper to compare the performance of this novel boost converter.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Taizhou Bei ◽  
Ping Wang ◽  
Liu Yang ◽  
Zhe Zhou

Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM) for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.


Author(s):  
Mohammad Zaid ◽  
Shahrukh Khan ◽  
Marif Daula Siddique ◽  
Adil Sarwar ◽  
Javed Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document