Analysis of Crosstalk in Optical Satellite Networks With Wavelength Division Multiplexing Architectures

2010 ◽  
Vol 28 (6) ◽  
pp. 931-938 ◽  
Author(s):  
Qinglong Yang ◽  
Liying Tan ◽  
Jing Ma
Author(s):  
Nory B. Jones ◽  
Christian Graham

As educational budgets continue to shrink, colleges and universities have turned to online course delivery as a means of increasing enrollments. In addition, with the proliferation of Internet-based course management and other software that facilitate the learning experience, many traditional courses are adding an online component, creating hybrid courses in different formats. In this chapter, the authors explore different strategies and technology solutions to help instructors develop rich, dynamic courses, whether they are completely online or hybrid courses that use online tools and technologies to augment the traditional class. This chapter covers the advantages and disadvantages of hybrid courses, technologies and practices available for them, emerging technologies such as Second Life™, social networks, dense wavelength division multiplexing, telepresence, satellite networks, and the use of texting in the classroom.


Author(s):  
BHADRA ANAMIKA ◽  
SAHU VIKAS ◽  
SHRIVASTAVA SHARAD MOHAN ◽  
ANSHU ◽  
SANGHVI ANJALI S. ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Georg Rademacher ◽  
Benjamin J. Puttnam ◽  
Ruben S. Luís ◽  
Tobias A. Eriksson ◽  
Nicolas K. Fontaine ◽  
...  

AbstractData rates in optical fiber networks have increased exponentially over the past decades and core-networks are expected to operate in the peta-bit-per-second regime by 2030. As current single-mode fiber-based transmission systems are reaching their capacity limits, space-division multiplexing has been investigated as a means to increase the per-fiber capacity. Of all space-division multiplexing fibers proposed to date, multi-mode fibers have the highest spatial channel density, as signals traveling in orthogonal fiber modes share the same fiber-core. By combining a high mode-count multi-mode fiber with wideband wavelength-division multiplexing, we report a peta-bit-per-second class transmission demonstration in multi-mode fibers. This was enabled by combining three key technologies: a wideband optical comb-based transmitter to generate highly spectral efficient 64-quadrature-amplitude modulated signals between 1528 nm and 1610 nm wavelength, a broadband mode-multiplexer, based on multi-plane light conversion, and a 15-mode multi-mode fiber with optimized transmission characteristics for wideband operation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Anurupa Lubana ◽  
Sanmukh Kaur ◽  
Yugnanda Malhotra

AbstractIn this work, we study and analyze the performance of Raman + Erbium-Ytterbium codoped fiber hybrid optical amplifier (HOA) for an ultradense wavelength division multiplexing (UD-WDM) system having 100 channels. The system has been investigated considering initial values of channel spacing and data rate of 0.1 nm (12.5 GHz) and 100 GB/s, respectively. Initially, the two important WDM system parameters—wavelength and channel spacing—have been selected and then optimization of the proposed HOA has been performed in terms of EYDFA length, pump power and Er+ concentration to achieve higher values of average gain, Q-factor and lower gain variation ratio. The optimized configuration of the HOA results in the achievement of higher value of average gain, Q-factor and gain variation ratio of 47 dB, 14 and 0.14, respectively, which confirms its viability for UD-WDM system applications.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


Sign in / Sign up

Export Citation Format

Share Document