Gallium Indium Nitride-Based Green Lasers

2012 ◽  
Vol 30 (5) ◽  
pp. 679-699 ◽  
Author(s):  
Dmitry Sizov ◽  
Rajaram Bhat ◽  
Chung-En Zah
2020 ◽  
Author(s):  
Jin Wu

InGaN can reach all values of bandgap from 3.42 to 0.7eV, which covers almost the entire solar spectrum. This study is to understand the influence of each parameter of the solar cell for an improved optimization of performance. The yield obtained for a reference cell is 12.2 % for optimal values of doping of the layers. For generation and recombination, performance of the cell varies with these settings. III nitrides have a high absorption coefficient, a very thin layers of material are sufficient to absorb most of the light.


2016 ◽  
Vol 52 (38) ◽  
pp. 6407-6410 ◽  
Author(s):  
Sujoy Sarkar ◽  
S. Sampath

A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.


Author(s):  
Shungo Okamoto ◽  
Naomichi Saito ◽  
Kotaro Ito ◽  
Bei Ma ◽  
Ken Morita ◽  
...  

Abstract Local heat transport in two GaxIn1-xN/GaN-heterostructures on sapphire substrates is investigated by microscopic Raman imaging using two lasers of 532 nm (Raman observation) and 325 nm (heat generation and Raman observation), which enables the separation of heat generation and Raman observation positions. It is found that E2(high) and A1(LO) modes of the Ga0.84In0.16N layer exhibit mutually different characteristics, which indicates the analysis of the occupation of the A1(LO) mode is available. E2(high) mode of the GaN layer observed by the 532-nm laser reveals that the transport of the heat energy generated in the Ga0.84In0.16N layer to the GaN under layer is blocked in the high-density area of misfit dislocation in the vicinity of the heterointerface.


2021 ◽  
Author(s):  
jin wu

InGaN can reach all values of bandgap from 3.42 to 0.7eV, which covers almost the entire solar spectrum. This study is to understand the influence of each parameter of the solar cell for an improved optimization of performance. The yield obtained for a reference cell is 12.2 % for optimal values of doping of the layers. For generation and recombination, performance of the cell varies with these settings. III nitrides have a high absorption coefficient, a very thin layers of material are sufficient to absorb most of the light.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


Sign in / Sign up

Export Citation Format

Share Document