scholarly journals Experimental Extraction of Effective Refractive Index and Thermo-Optic Coefficients of Silicon-on-Insulator Waveguides Using Interferometers

2015 ◽  
Vol 33 (21) ◽  
pp. 4471-4477 ◽  
Author(s):  
Sarvagya Dwivedi ◽  
Alfonso Ruocco ◽  
Michael Vanslembrouck ◽  
Thijs Spuesens ◽  
Peter Bienstman ◽  
...  
2020 ◽  
Vol 13 (40) ◽  
pp. 4262-4274
Author(s):  
Sandhya Jainth

Objective- To design Graphene-Silicon based rib waveguide and reduce the losses in the strip in order to meet the requirement for ultra-fast & ultrahigh optical bandwidth communication and computing in integrated optical devices. Method –Propagation losses and effective refractive index are the two key parameters. In order to meet the objective, the effects of Graphene for manufacturing passive devices/components in the field of Integrated Photonic like integrated optical waveguide have been analysed by measuring the changes in propagation losses and effective refractive index of the silicon photonics devices for operating at different wavelengths. Findings- We have presented the design and simulation of SOI (Silicon-on-Insulator) platforms with 2D layer materials (graphene) which has been used along with their mode of propagation, effective refractive index (ne f f ), propagation losses (dB/cm) and varying wavelength range for optimum performance. In addition to this, we have also calculated the boundary limit for both the speed and bandwidth. We also reported the development of Silicon rib waveguide, Graphene-Silicon based rib waveguide and Ge on SOI with graphene later at the top of strip waveguide.Minimum loss of strip waveguide is 2.9 dB/cm which has been obtained for Mid-IR wavelength generally used for high power mid- IR sensing.


2019 ◽  
Vol 33 (25) ◽  
pp. 1950292
Author(s):  
C. Y. Zhao ◽  
P. Y. Chen ◽  
L. Zhang

A novel design of a silicon-on-insulator (SOI)-based resonator based on slot micro-ring and Bragg gratings is presented. The corrugated Bragg gratings are structured on both sides of slot micro-ring waveguides. The variation of the effective refractive index is detected by monitoring the shift of the spectral of the resonator. The transmission spectrum and field distribution of the sensor structures are simulated using finite-difference time-domain (FDTD) method. With the combination of the Bragg gratings, the measurement range of the sensor significantly increases without the restriction of a free spectral range (FSR). Our proposed sensor design provides a promising candidate for on-chip integration with other silicon photonic element.


2007 ◽  
Vol 21 (30) ◽  
pp. 5075-5089 ◽  
Author(s):  
HALA M. KHALIL ◽  
MOHAMMED M. SHABAT ◽  
SOFYAN A. TAYA ◽  
MAZEN M. ABADLA

In this work, we present an extensive theoretical analysis of nonlinear optical waveguide sensor. The waveguide under consideration consists of a thin dielectrica film surrounded by a self-focused nonlinear cladding and a linear substrate. The nonlinearity of the cladding is considered to be of Kerr-type. Both cases, when the effective refractive index is greater and when it is smaller than the index of the guiding layer, are discussed. The sensitivity of the effective refractive index to any change in the cladding index in evanescent optical waveguide sensor is derived for TM modes. Closed form analytical expressions and normalized charts are given to provide the conditions required for the sensor to exhibit its maximum sensitivity. The results are compared with those of the well-known linear evanescent waveguide sensors.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 651 ◽  
Author(s):  
Ermolaev ◽  
Kushnir ◽  
Sapoletova ◽  
Napolskii

Photonic crystals based on titanium oxide are promising for optoelectronic applications, for example as components of solar cells and photodetectors. These materials attract great research attention because of the high refractive index of TiO2. One of the promising routes to prepare photonic crystals based on titanium oxide is titanium anodizing at periodically changing voltage or current. However, precise control of the photonic band gap position in anodic titania films is a challenge. To solve this problem, systematic data on the effective refractive index of the porous anodic titanium oxide are required. In this research, we determine quantitatively the dependence of the effective refractive index of porous anodic titanium oxide on the anodizing regime and develop a model which allows one to predict and, therefore, control photonic band gap position in the visible spectrum range with an accuracy better than 98.5%. The prospects of anodic titania photonic crystals implementation as refractive index sensors are demonstrated.


2016 ◽  
Vol 140 ◽  
pp. 77-84 ◽  
Author(s):  
Jing Zhang ◽  
Zhifang Wu ◽  
Tianye Huang ◽  
Xuguang Shao ◽  
Ping Shum

Sign in / Sign up

Export Citation Format

Share Document