High Temperature Operation Limit Assessment for 4H-SiC Schottky Diode-Based Extreme Temperature Sensors

2019 ◽  
Vol 19 (5) ◽  
pp. 1640-1644 ◽  
Author(s):  
Vasily A. Krasnov ◽  
Stanislav V. Shutov ◽  
Sergey Yu Yerochin ◽  
Oleksii M. Demenskyi
2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


Author(s):  
James Frith ◽  
Robert Frith

After operating for a number of years, a high temperature rotary ore cooler suffered cracking. The cracks grew through the shell wall resulting in leakage of water from the water bath into the ore. Under the extreme temperature, the risk of water dissociation into hydrogen and subsequent explosion was of substantial concern and instigated the investigation in to the root cause of the cracking which was deduced to be driven by high thermally induced stresses. The root cause for the thermally induced stressing was found to be related to a design flaw that was not immediately obvious. The investigation outcome was a recommendation to change the design to eliminate the high localized stresses which were believed to be the driving force behind the corrosion fatigue crack propagation. This paper presents the investigation approach which included advanced thermal and stress analysis and reports on the general design principle that should be adopted to avoid thermal stress induced corrosion fatigue cracking under high temperature operation.


1997 ◽  
Vol 18 (11) ◽  
pp. 556-558 ◽  
Author(s):  
A. Vescan ◽  
I. Daumiller ◽  
P. Gluche ◽  
W. Ebert ◽  
E. Kohn

2012 ◽  
Vol E95.C (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Koji TAKEDA ◽  
Tomonari SATO ◽  
Takaaki KAKITSUKA ◽  
Akihiko SHINYA ◽  
Kengo NOZAKI ◽  
...  

2014 ◽  
Vol 102 (7) ◽  
pp. 2932-2938 ◽  
Author(s):  
Paula Rinaudo ◽  
Benjamín Torres Górriz ◽  
David Barrera Villar ◽  
Ignacio Payá Zaforteza ◽  
Pedro Calderon Garcia ◽  
...  

Alloy Digest ◽  
2008 ◽  
Vol 57 (6) ◽  

Abstract Kubota UCX was developed for very high temperature operation for ethylene pyrolysis service. The alloy also has excellent oxidation and corrosion resistance. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting and joining. Filing Code: Ni-663. Producer or source: Kubota Metal Corporation, Fahramet Division.


2004 ◽  
Author(s):  
Robert Fielder ◽  
Matthew Palmer ◽  
Wing Ng ◽  
Matthew Davis ◽  
Aditya Ringshia

2021 ◽  
Vol 11 (10) ◽  
pp. 4635
Author(s):  
Marcel Ulrich Ahrens ◽  
Maximilian Loth ◽  
Ignat Tolstorebrov ◽  
Armin Hafner ◽  
Stephan Kabelac ◽  
...  

Decarbonization of the industrial sector is one of the most important keys to reducing global warming. Energy demands and associated emissions in the industrial sector are continuously increasing. The utilization of high temperature heat pumps (HTHPs) operating with natural fluids presents an environmentally friendly solution with great potential to increase energy efficiency and reduce emissions in industrial processes. Ammonia-water absorption–compression heat pumps (ACHPs) combine the technologies of an absorption and vapor compression heat pump using a zeotropic mixture of ammonia and water as working fluid. The given characteristics, such as the ability to achieve high sink temperatures with comparably large temperature lifts and high coefficient of performance (COP) make the ACHP interesting for utilization in various industrial high temperature applications. This work reviews the state of technology and identifies existing challenges based on conducted experimental investigations. In this context, 23 references with capacities ranging from 1.4 kW to 4500 kW are evaluated, achieving sink outlet temperatures from 45 °C to 115 °C and COPs from 1.4 to 11.3. Existing challenges are identified for the compressor concerning discharge temperature and lubrication, for the absorber and desorber design for operation and liquid–vapor mixing and distribution and the choice of solution pump. Recent developments and promising solutions are then highlighted and presented in a comprehensive overview. Finally, future trends for further studies are discussed. The purpose of this study is to serve as a starting point for further research by connecting theoretical approaches, possible solutions and experimental results as a resource for further developments of ammonia-water ACHP systems at high temperature operation.


Sign in / Sign up

Export Citation Format

Share Document