Analysis of Kalman Filter Innovation-Based GNSS Spoofing Detection Method for INS/GNSS Integrated Navigation System

2019 ◽  
Vol 19 (13) ◽  
pp. 5167-5178 ◽  
Author(s):  
Yang Liu ◽  
Sihai Li ◽  
Qiangwen Fu ◽  
Zhenbo Liu ◽  
Qi Zhou
2016 ◽  
Vol 69 (4) ◽  
pp. 905-919 ◽  
Author(s):  
Yixian Zhu ◽  
Xianghong Cheng ◽  
Lei Wang

For the integrated navigation system, the correctness and the rapidity of fault detection for each sensor subsystem affects the accuracy of navigation. In this paper, a novel fault detection method for navigation systems is proposed based on Gaussian Process Regression (GPR). A GPR model is first used to predict the innovation of a Kalman filter. To avoid local optimisation, particle swarm optimisation is adopted to find the optimal hyper-parameters for the GPR model. The Fault Detection Function (FDF), which has an obvious jump in value when a fault occurs, is composed of the predicted innovation, the actual innovation of the Kalman filter and their variance. The fault can be detected by comparing the FDF value with a predefined threshold. In order to verify its validity, the proposed method is used in a SINS/GPS/Odometer integrated navigation system. The comparison experiments confirm that the proposed method can detect a gradual fault more quickly compared with the residual chi-squared test. Thus the navigation system with the proposed method gives more accurate outputs and its reliability is greatly improved.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Author(s):  

The schemes of navigation systems correction are considered. The operation mode of the aircraft during navigation is analyzed. An adaptive modification of the linear Kalman filter is used to correct the navigation information. An algorithm for predicting a correction signal based on a neural network in the event of a loss of a SNS correction signal is formed. Experimental results show the effectiveness of the algorithm. Keywords aircraft; inertial navigation system; satellite system; Kalman filter; neural networks; genetic algorithm


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 51386-51395 ◽  
Author(s):  
Li Luo ◽  
Yonggang Zhang ◽  
Tao Fang ◽  
Ning Li

2017 ◽  
Vol 24 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Piotr Kaniewski ◽  
Rafał Gil ◽  
Stanisław Konatowski

Abstract The paper presents methods of on-line and off-line estimation of UAV position on the basis of measurements from its integrated navigation system. The navigation system installed on board UAV contains an INS and a GNSS receiver. The UAV position, as well as its velocity and orientation are estimated with the use of smoothing algorithms. For off-line estimation, a fixed-interval smoothing algorithm has been applied. On-line estimation has been accomplished with the use of a fixed-lag smoothing algorithm. The paper includes chosen results of simulations demonstrating improvements of accuracy of UAV position estimation with the use of smoothing algorithms in comparison with the use of a Kalman filter.


Sign in / Sign up

Export Citation Format

Share Document