Real-time in-situ laser ranging via back propagation neural network on FPGA

2020 ◽  
pp. 1-1
Author(s):  
Xinhao Xie ◽  
Xiaolu Li ◽  
Duan Li ◽  
Lijun Xu
Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2618 ◽  
Author(s):  
Jingbo Zhou ◽  
Laisheng Pan ◽  
Yuehua Li ◽  
Peng Liu ◽  
Lijian Liu

A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.


Author(s):  
Guoqiang Chen ◽  
Hongpeng Zhou ◽  
Junjie Huang ◽  
Mengchao Liu ◽  
Bingxin Bai

Introduction: The position and pose measurement of the rehabilitation robot plays a very important role in patient rehabilitation movement, and the non-contact real-time robot position and pose measurement is of great significance. Rehabilitation training is a relatively complicated process, so it is very important to detect the training process of the rehabilitation robot in real time and accuracy. The method of the deep learning has a very good effect on monitoring the rehabilitation robot state. Methods: The structure sketch and the 3D model of the 3-PRS ankle rehabilitation robot are established, and the mechanism kinematics is analyzed to obtain the relationship between the driving input - the three slider heights - and the position and pose parameters. The whole network of the position and pose measurement is composed of two stages: (1) measuring the slider heights using the CNN based on the robot image and (2) calculating the position and pose parameter using the BPNN based on the measured slider heights from the CNN. According to the characteristics of continuous variation of the slider heights, a regression CNN is proposed and established to measure the robot slider height. Based on the data calculated by using the inverse kinematics of the 3-PRS ankle rehabilitation robot, a BPNN is established to solve the forward kinematics for the position and pose. Results: The experimental results show that the regression CNN outputs the slider height and then the BPNN accurately outputs the corresponding position and pose. Eventually, the position and pose parameters are obtained from the robot image. Compared with the traditional robot position and pose measurement method, the proposed method has significant advantages. Conclusion: The proposed 3-PRS ankle rehabilitation position and pose method can not only shorten the experiment period and cost, but also get excellent timeliness and precision. The proposed approach can help the medical staff to monitor the status of the rehabilitation robot and help the patient rehabilitation in training. Discussion: The goal of the work is to construct a new position and pose detection network based on the combination of the regression convolutional neural network (CNN) and the back propagation neural network (BPNN). The main contribution is to measure the position and pose of the 3-PRS ankle rehabilitation robot in real time, which improves the measurement accuracy and the efficiency of the medical staff work.


Author(s):  
Shenglei Du ◽  
Jingmei Guo ◽  
Lin Yi ◽  
Chen Zhang ◽  
Shi Liu

Abstract The high cost of operation and maintenance (O&M) management has become an important factor hindering the sustainable development of the wind power industry. Performing accurate condition assessment of wind turbine components to optimize the structural design and O&M strategy has become a research trend. However, the random and varying operating conditions of wind turbines make this problem difficult and challenging. A Supervisory Control and Data Acquisition (SCADA) system collects signals that contain a large amount of raw and useful information from critical wind turbine sub-assemblies. Extracting key information from the SCADA data is an economical and effective way for condition assessment. A real-time reliability assessment method of wind turbine components using a Back-Propagation Neural Network (BPNN) and SCADA data is presented in this paper. The normal behavior models are established with the processed SCADA data, and the real-time reliability of wind turbine components are assessed based on the prediction result. For verification, the BPNN-based reliability assessment method is applied to a gearbox with real SCADA data of a 1.5MW onshore wind turbine located along the southeast coast of China. The results show the capability of the proposed model in assessing the reliability of wind turbine components continuously and in real time.


Author(s):  
YO-PING HUANG ◽  
TSUN-WEI CHANG ◽  
YEN-REN CHEN ◽  
FRODE EIKA SANDNES

License plate recognition systems have been used extensively for many applications including parking lot management, tollgate monitoring, and for the investigation of stolen vehicles. Most researches focus on static systems, which require a clear and level image to be taken of the license plate. However, the acquisition of images that can be successfully analyzed relies on both the location and movement of the target vehicle and the clarity of the environment. Moreover, only few studies have addressed the problems associated with instant car image processing. In view of these problems, a real-time license plate recognition system is proposed that recognizes the video frames taken from existing surveillance cameras. The proposed system finds the location of the license plate using projection analysis, and the characters are identified using a back propagation neural network. The strategy achieves a recognition rate of 85.8% and almost 100% after the neural network has been retrained using the erroneously recognized characters, respectively.


2021 ◽  
Author(s):  
Hamad Yousif

Precise real-time GPS orbit at a high rate is required for a number of applications, including real-time Precise Point Positioning (PPP), long range RTK and weather forecasts. To support these applications, the International GNSS Service (IGS) has developed a precise orbital service. At present, users may take advantage of the predicted part of the IGS ultra-rapid orbit for real-time and near real-time applications. Unfortunately, however the data rate of such precise orbits is usually limited to 15 minutes. In addition, the precision of the predicted part of the IGS ultrarapid orbit is limited to about 10 cm. for the 24-hour predicted part, which may not be sufficient for the above applications, This research proposes algorithms for interpolation and prediction methods that are intended to reduce the effect of such limitations. This research examines the performance of four interpolation methods for IGS precise GPS orbits, nameley Lagrange, Newton Divided Difference, Bernese Polynomial, Cubic Spline and Trigonometric Interpolation. In addition, a comparison between this research and earlier studies were conducted. A new approach that utilizes the residuals between the broadcast and precise ephemeris to generate a high-density precise ephemeris is also introduced in this research. A three-step neural network-based model is then developed in this research to generate a 6-hour predicted orbital arc. First, an initial predicted orbit is generated by extrapolating a concentrated group of previous precise ephemeris for 5 days. GPS observations for 35 globally distributed tracking stations, corresponding to the 24-hour period preceding the predicted part, are then utilized within the Bernese software to further enhance the predicted orbit. FInally, the predicted orbit is refined by implementing a modular - three-layer feed-forward back-propagation neural network. A comparison is made between our predicted orbit and the IGS ultra-rapid orbit to verify the efficiency of the newly developed neural network-based model. It is shown that the newly developed neural network-based model improved the orbit prediction by 47%, 22% and 37% for three randomly selected satellites from Blocks IIA, IIR and IIR-M respectively.


2021 ◽  
Author(s):  
Hamad Yousif

Precise real-time GPS orbit at a high rate is required for a number of applications, including real-time Precise Point Positioning (PPP), long range RTK and weather forecasts. To support these applications, the International GNSS Service (IGS) has developed a precise orbital service. At present, users may take advantage of the predicted part of the IGS ultra-rapid orbit for real-time and near real-time applications. Unfortunately, however the data rate of such precise orbits is usually limited to 15 minutes. In addition, the precision of the predicted part of the IGS ultrarapid orbit is limited to about 10 cm. for the 24-hour predicted part, which may not be sufficient for the above applications, This research proposes algorithms for interpolation and prediction methods that are intended to reduce the effect of such limitations. This research examines the performance of four interpolation methods for IGS precise GPS orbits, nameley Lagrange, Newton Divided Difference, Bernese Polynomial, Cubic Spline and Trigonometric Interpolation. In addition, a comparison between this research and earlier studies were conducted. A new approach that utilizes the residuals between the broadcast and precise ephemeris to generate a high-density precise ephemeris is also introduced in this research. A three-step neural network-based model is then developed in this research to generate a 6-hour predicted orbital arc. First, an initial predicted orbit is generated by extrapolating a concentrated group of previous precise ephemeris for 5 days. GPS observations for 35 globally distributed tracking stations, corresponding to the 24-hour period preceding the predicted part, are then utilized within the Bernese software to further enhance the predicted orbit. FInally, the predicted orbit is refined by implementing a modular - three-layer feed-forward back-propagation neural network. A comparison is made between our predicted orbit and the IGS ultra-rapid orbit to verify the efficiency of the newly developed neural network-based model. It is shown that the newly developed neural network-based model improved the orbit prediction by 47%, 22% and 37% for three randomly selected satellites from Blocks IIA, IIR and IIR-M respectively.


Sign in / Sign up

Export Citation Format

Share Document