Real-Time Optimized Prediction Model for Dissolved Oxygen in Crab Aquaculture Ponds Using Back Propagation Neural Network

2014 ◽  
Vol 12 (3) ◽  
pp. 723-729 ◽  
Author(s):  
Yuting Yang ◽  
Haijiang Tai ◽  
Daoliang Li
2020 ◽  
Vol 63 (4) ◽  
pp. 1071-1077
Author(s):  
Chenyang Sun ◽  
Lusheng Chen ◽  
Yinian Li ◽  
Hao Yao ◽  
Nan Zhang ◽  
...  

HighlightsWe propose five spraying parameters according to the characteristics of pig carcasses in the spray-chilling process.A prediction model for pig carcass weight loss, based on a genetic algorithm back-propagation neural network, is proposed to reveal the relationship between weight loss and spraying parameters.To study the effects of various spraying parameters on weight loss, an automatic spray-chilling device was designed, which can modify up to five spraying parameters.Abstract. Because the weight loss of a pig carcass in the spray-chilling process is easily affected by the spraying frequency and duration, a prediction model for weight loss based on a genetic algorithm (GA) back-propagation (BP) neural network is proposed in this article. With three-way crossbred pig carcasses selected as the test materials, the duration and time interval of high-frequency spraying, the duration and time interval of low-frequency spraying, and the duration of a single spray were selected as inputs to the network model. The weight and threshold of the network were then optimized by the GA. The prediction model for pig carcass weight loss established by the GA BP neural network yielded a correlation coefficient of R = 0.99747 between the network output value of the test samples and the target value. Weight loss prediction by the model is feasible and allows better expression of the nonlinear relationship between weight loss and the main controlling factors. The results can be a reference for chilled meat production. Keywords: BP neural network, Genetic algorithm, Pig carcass, Predictive model, Weight loss


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2618 ◽  
Author(s):  
Jingbo Zhou ◽  
Laisheng Pan ◽  
Yuehua Li ◽  
Peng Liu ◽  
Lijian Liu

A line structured light sensor (LSLS) is generally constituted of a laser line projector and a camera. With the advantages of simple construction, non-contact, and high measuring speed, it is of great perspective in 3D measurement. For traditional LSLSs, the camera exposure time is usually fixed while the surface properties can be varied for different measurement tasks. This would lead to under/over exposure of the stripe images or even failure of the measurement. To avoid these undesired situations, an adaptive control method was proposed to modulate the average stripe width (ASW) within a favorite range. The ASW is first computed based on the back propagation neural network (BPNN), which can reach a high accuracy result and reduce the runtime dramatically. Then, the approximate linear relationship between the ASW and the exposure time was demonstrated via a series of experiments. Thus, a linear iteration procedure was proposed to compute the optimal camera exposure time. When the optimized exposure time is real-time adjusted, stripe images with the favorite ASW can be obtained during the whole scanning process. The smoothness of the stripe center lines and the surface integrity can be improved. A small proportion of the invalid stripe images further proves the effectiveness of the control method.


2020 ◽  
Vol 12 (4) ◽  
pp. 1550 ◽  
Author(s):  
Xingdong Zhao ◽  
Jia’an Niu

A back-propagation neural network prediction model with three layers and six neurons in the hidden layer is established to overcome the limitation of the equivalent linear overbreak slough (ELOS) empirical graph method in estimating unplanned ore dilution. The modified stability number, hydraulic radius, average deviation of the borehole, and powder factor are taken as input variables and the ELOS of quantified unplanned ore dilution as the output variable. The training and testing of the model are performed using 120 sets of data. The average fitting degree r2 of the prediction model is 0.9761, the average mean square error is 0.0001, and the relative error of the prediction is approximately 6.2%. A method of calculating the unplanned ore dilution is proposed and applied to a test stope of the Sandaoqiao lead–zinc mine. The calculated unplanned ore dilution is 0.717 m, and the relative error (i.e., the difference between calculation and measurement of 0.70 m) is 2.4%, which is better than the relative errors for the empirical graph method and numerical simulation (giving dilution values of 0.8 and 0.55 m, respectively). The back-propagation neural network prediction model is confirmed to predict the unplanned ore dilution in real applications.


Author(s):  
Guoqiang Chen ◽  
Hongpeng Zhou ◽  
Junjie Huang ◽  
Mengchao Liu ◽  
Bingxin Bai

Introduction: The position and pose measurement of the rehabilitation robot plays a very important role in patient rehabilitation movement, and the non-contact real-time robot position and pose measurement is of great significance. Rehabilitation training is a relatively complicated process, so it is very important to detect the training process of the rehabilitation robot in real time and accuracy. The method of the deep learning has a very good effect on monitoring the rehabilitation robot state. Methods: The structure sketch and the 3D model of the 3-PRS ankle rehabilitation robot are established, and the mechanism kinematics is analyzed to obtain the relationship between the driving input - the three slider heights - and the position and pose parameters. The whole network of the position and pose measurement is composed of two stages: (1) measuring the slider heights using the CNN based on the robot image and (2) calculating the position and pose parameter using the BPNN based on the measured slider heights from the CNN. According to the characteristics of continuous variation of the slider heights, a regression CNN is proposed and established to measure the robot slider height. Based on the data calculated by using the inverse kinematics of the 3-PRS ankle rehabilitation robot, a BPNN is established to solve the forward kinematics for the position and pose. Results: The experimental results show that the regression CNN outputs the slider height and then the BPNN accurately outputs the corresponding position and pose. Eventually, the position and pose parameters are obtained from the robot image. Compared with the traditional robot position and pose measurement method, the proposed method has significant advantages. Conclusion: The proposed 3-PRS ankle rehabilitation position and pose method can not only shorten the experiment period and cost, but also get excellent timeliness and precision. The proposed approach can help the medical staff to monitor the status of the rehabilitation robot and help the patient rehabilitation in training. Discussion: The goal of the work is to construct a new position and pose detection network based on the combination of the regression convolutional neural network (CNN) and the back propagation neural network (BPNN). The main contribution is to measure the position and pose of the 3-PRS ankle rehabilitation robot in real time, which improves the measurement accuracy and the efficiency of the medical staff work.


Sign in / Sign up

Export Citation Format

Share Document