High Resolution Frequency Measurement Techniques for Relaxation Oscillator Based Capacitive Sensors

2021 ◽  
pp. 1-1
Author(s):  
Laxmeesha Somappa ◽  
Shahid Malik ◽  
Shuchin Aeron ◽  
Sameer Sonkusale ◽  
Maryam Shojaei Baghini
1990 ◽  
Vol 5 (1) ◽  
pp. 41-53 ◽  
Author(s):  
V.J. Thottuvelil ◽  
T.G. Wilson ◽  
H.A. Owen

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Baoqiang Du ◽  
Dazheng Feng ◽  
Yaohua Tang ◽  
Xin Geng ◽  
Duo Zhang ◽  
...  

Author(s):  
Patrick Yeung ◽  
Ryan Sporns ◽  
Stuart Clouston ◽  
Grant A. Coleman ◽  
Scott Miller ◽  
...  

Magnetic Flux Leakage inspection tools are generally calibrated on a series of manufactured defects. This has been shown to give good results on a wide range of defects in varying wall thicknesses, velocities and pipeline conditions. Significant improvements in sizing performance can be achieved if sizing algorithms can be optimized on high resolution field data with low uncertainty that more closely reflects the actual line specific corrosion dimensions and profiles. The effects of defect profile can be significant to the MFL signal response. In order to achieve this goal, very high resolution and accurate field measurement techniques are needed to map the combined profile of a significant number of corrosion defects. This paper discusses a process for developing high performance sizing algorithms that consistently better industry standards for MFL sizing performance in areas of high density or complex corrosion in both oil and gas pipelines through the incorporation of high resolution laser scan technology. Complex corrosion may be considered as an area wherein individual corrosions interact together such that they no longer behave as a single corrosion and the MFL response experiences a superposition of leakage signals. A review of the methodology will be discussed and the results demonstrated through case studies from both Enbridge Pipelines Inc. and TransCanada Pipelines Ltd. where high-resolution field data was used as the basis for sizing model optimization.


2019 ◽  
Vol 16 (5) ◽  
pp. 979-998 ◽  
Author(s):  
Soeren Thomsen ◽  
Johannes Karstensen ◽  
Rainer Kiko ◽  
Gerd Krahmann ◽  
Marcus Dengler ◽  
...  

Abstract. Upwelling systems play a key role in the global carbon and nitrogen cycles and are also of local relevance due to their high productivity and fish resources. To capture and understand the high spatial and temporal variability in physical and biogeochemical parameters found in these regions, novel measurement techniques have to be combined in an interdisciplinary manner. Here we use high-resolution glider-based physical–biogeochemical observations in combination with ship-based underwater vision profiler, sensor and bottle data to investigate the drivers of oxygen and nitrate variability across the shelf break off Mauritania in June 2014. Distinct oxygen and nitrate variability shows up in our glider data. High-oxygen and low-nitrate anomalies were clearly related to water mass variability and probably linked to ocean transport. Low-oxygen and high-nitrate patches co-occurred with enhanced turbidity signals close to the seabed, which suggests locally high microbial respiration rates of resuspended organic matter near the sea floor. This interpretation is supported by high particle abundance observed by the underwater vision profiler and enhanced particle-based respiration rate estimates close to the seabed. Discrete in situ measurements of dissolved organic carbon and amino acids suggest the formation of dissolved organic carbon due to particle dissolution near the seabed fueling additional microbial respiration. During June an increase in the oxygen concentration on the shelf break of about 15 µmol kg−1 was observed. These changes go along with meridional circulation changes but cannot be explained by typical water mass property changes. Thus our high-resolution interdisciplinary observations highlight the complex interplay of remote and local physical–biogeochemical drivers of oxygen and nitrate variability off Mauritania, which cannot be captured by classical shipboard observations alone.


Sign in / Sign up

Export Citation Format

Share Document