Machine Learning Assisted Novel Microwave Sensor Design for Dielectric Parameter Characterization of Water-Ethanol Mixture

2021 ◽  
pp. 1-1
Author(s):  
Cem Gocen ◽  
Merih Palandoken
Author(s):  
Raghothama Chaerkady ◽  
Yebin Zhou ◽  
Jared A. Delmar ◽  
Shao Huan Samuel Weng ◽  
Junmin Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Castela Forte ◽  
Galiya Yeshmagambetova ◽  
Maureen L. van der Grinten ◽  
Bart Hiemstra ◽  
Thomas Kaufmann ◽  
...  

AbstractCritically ill patients constitute a highly heterogeneous population, with seemingly distinct patients having similar outcomes, and patients with the same admission diagnosis having opposite clinical trajectories. We aimed to develop a machine learning methodology that identifies and provides better characterization of patient clusters at high risk of mortality and kidney injury. We analysed prospectively collected data including co-morbidities, clinical examination, and laboratory parameters from a minimally-selected population of 743 patients admitted to the ICU of a Dutch hospital between 2015 and 2017. We compared four clustering methodologies and trained a classifier to predict and validate cluster membership. The contribution of different variables to the predicted cluster membership was assessed using SHapley Additive exPlanations values. We found that deep embedded clustering yielded better results compared to the traditional clustering algorithms. The best cluster configuration was achieved for 6 clusters. All clusters were clinically recognizable, and differed in in-ICU, 30-day, and 90-day mortality, as well as incidence of acute kidney injury. We identified two high mortality risk clusters with at least 60%, 40%, and 30% increased. ICU, 30-day and 90-day mortality, and a low risk cluster with 25–56% lower mortality risk. This machine learning methodology combining deep embedded clustering and variable importance analysis, which we made publicly available, is a possible solution to challenges previously encountered by clustering analyses in heterogeneous patient populations and may help improve the characterization of risk groups in critical care.


2021 ◽  
Vol 77 (18) ◽  
pp. 3087
Author(s):  
Naveena Yanamala ◽  
Nanda H. Krishna ◽  
Quincy Hathaway ◽  
Aditya Radhakrishnan ◽  
Srinidhi Sunkara ◽  
...  

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 62779-62787
Author(s):  
Ammar Armghan ◽  
Turki M. Alanazi ◽  
Ahsan Altaf ◽  
Tanveerul Haq

Author(s):  
Zachary Ballard ◽  
Calvin Brown ◽  
Asad M. Madni ◽  
Aydogan Ozcan

Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3385
Author(s):  
Jialu Ma ◽  
Jingchao Tang ◽  
Kaicheng Wang ◽  
Lianghao Guo ◽  
Yubin Gong ◽  
...  

A complex permittivity characterization method for liquid samples has been proposed. The measurement is carried out based on a self-designed microwave sensor with a split ring resonator (SRR), the unload resonant frequency of which is 5.05 GHz. The liquid samples in capillary are placed in the resonant zone of the fabricated senor for high sensitivity measurement. The frequency shift of 58.7 MHz is achieved when the capillary is filled with ethanol, corresponding a sensitivity of 97.46 MHz/μL. The complex permittivity of methanol, ethanol, isopropanol (IPA) and deionized water at the resonant frequency are measured and calibrated by the first order Debye model. Then, the complex permittivity of different concentrations of aqueous solutions of these materials are measured by using the calibrated sensor system. The results show that the proposed sensor has high sensitivity and accuracy in measuring the complex permittivity of liquid samples with volumes as small as 0.13 μL. It provides a useful reference for the complex permittivity characterization of small amount of liquid chemical samples. In addition, the characterization of an important biological sample (inositol) is carried out by using the proposed sensor.


2020 ◽  
Author(s):  
Spandan Das ◽  
Jie Gong ◽  
Chenxi Wang ◽  
Dong Wu ◽  
Stephen Munchak ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinchao Liu ◽  
Di Zhang ◽  
Dianqiang Yu ◽  
Mengxin Ren ◽  
Jingjun Xu

AbstractEllipsometry is a powerful method for determining both the optical constants and thickness of thin films. For decades, solutions to ill-posed inverse ellipsometric problems require substantial human–expert intervention and have become essentially human-in-the-loop trial-and-error processes that are not only tedious and time-consuming but also limit the applicability of ellipsometry. Here, we demonstrate a machine learning based approach for solving ellipsometric problems in an unambiguous and fully automatic manner while showing superior performance. The proposed approach is experimentally validated by using a broad range of films covering categories of metals, semiconductors, and dielectrics. This method is compatible with existing ellipsometers and paves the way for realizing the automatic, rapid, high-throughput optical characterization of films.


Sign in / Sign up

Export Citation Format

Share Document