scholarly journals Variation Characteristic of NDVI and its Response to Climate Change in the Middle and Upper Reaches of Yellow River Basin, China

Author(s):  
Chengpeng Lu ◽  
Muchen Hou ◽  
Zhiliang Liu ◽  
Hengji Li ◽  
Chenyu Lu
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Wu ◽  
Heng Xiao ◽  
Guihua Lu ◽  
Jinming Chen

The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.


Water ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 116 ◽  
Author(s):  
Bin Li ◽  
Changyou Li ◽  
Jianyu Liu ◽  
Qiang Zhang ◽  
Limin Duan

2008 ◽  
Vol 21 (8) ◽  
pp. 1790-1806 ◽  
Author(s):  
Qiuhong Tang ◽  
Taikan Oki ◽  
Shinjiro Kanae ◽  
Heping Hu

Abstract A distributed biosphere hydrological (DBH) model system was used to explore the internal relations among the climate system, human society, and the hydrological system in the Yellow River basin, and to interpret possible mechanisms for observed changes in Yellow River streamflow from 1960 to 2000. Several scenarios were evaluated to elucidate the hydrological response to climate system, land cover, and irrigation. The results show that climate change is the dominant cause of annual streamflow changes in the upper and middle reaches, but human activities dominate annual streamflow changes in the lower reaches of the Yellow River basin. The annual river discharge at the mouth is affected by climate change and by human activities in nearly equal proportion. The linear component of climate change contributes to the observed annual streamflow decrease, but changes in the climate temporal pattern have a larger impact on annual river discharge than does the linear component of climate change. Low flow is more significantly affected by irrigation withdrawals than by climate change. Reservoirs induce more diversions for irrigation, while at the same time the results demonstrate that the reservoirs may help to maintain environmental flows and counter what otherwise would be more serious reductions in low flows.


2018 ◽  
Vol 39 (6) ◽  
pp. 2361
Author(s):  
Lingyue Wang ◽  
Xiaoliu Yang ◽  
Ruina Zhao

Conflicts between water supply and water demand are intensifying in irrigation districts along the Lower Yellow River, China, due to climate change and human activities. To ensure both adequate food supply and water resource sustainability in the region, this paper investigated the relationship between wheat yield and meteorological variables in 7 provinces within the Yellow River Basin. The key meteorological variables that influenced wheat yield were identified, and the regression functions between climate relevant wheat yield and these variables were established. Combining with the climate change scenarios in the future, the impact of climate change on crop yield were assessed. To cope with limited water resources in this region, it is necessary to properly irrigate crops based on soil water content and take full advantage of precipitation and surface runoff during the summer maize season.


Sign in / Sign up

Export Citation Format

Share Document