scholarly journals A Single-Photon Avalanche Camera for Fluorescence Lifetime Imaging Microscopy and Correlation Spectroscopy

2014 ◽  
Vol 20 (6) ◽  
pp. 344-353 ◽  
Author(s):  
Marco Vitali ◽  
Lars Terenius ◽  
Franco Zappa ◽  
Rudolf Rigler ◽  
Danilo Bronzi ◽  
...  
2008 ◽  
Vol 6 (suppl_1) ◽  
Author(s):  
P.R Barber ◽  
S.M Ameer-Beg ◽  
J Gilbey ◽  
L.M Carlin ◽  
M Keppler ◽  
...  

Förster resonance energy transfer (FRET) detected via fluorescence lifetime imaging microscopy (FLIM) and global analysis provide a way in which protein–protein interactions may be spatially localized and quantified within biological cells. The FRET efficiency and proportion of interacting molecules have been determined using bi-exponential fitting to time-domain FLIM data from a multiphoton time-correlated single-photon counting microscope system. The analysis has been made more robust to noise and significantly faster using global fitting, allowing higher spatial resolutions and/or lower acquisition times. Data have been simulated, as well as acquired from cell experiments, and the accuracy of a modified Levenberg–Marquardt fitting technique has been explored. Multi-image global analysis has been used to follow the epidermal growth factor-induced activation of Cdc42 in a short-image-interval time-lapse FLIM/FRET experiment. Our implementation offers practical analysis and time-resolved-image manipulation, which have been targeted towards providing fast execution, robustness to low photon counts, quantitative results and amenability to automation and batch processing.


Author(s):  
Mari C. Mañas-Torres ◽  
Cristina Gila-Vilchez ◽  
Juan Antonio Gonzalez Vera ◽  
Francisco Conejero-Lara ◽  
Victor Blanco ◽  
...  

Making use of the combination of multiparametric Fluorescence Lifetime Imaging Microscopy (FLIM) and single-molecule Fluorescence Lifetime Correlation Spectroscopy (FLCS), we have been able to study early stages of Fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF)...


2020 ◽  
Author(s):  
V. Zickus ◽  
M.-L. Wu ◽  
K. Morimoto ◽  
V. Kapitany ◽  
A. Fatima ◽  
...  

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 Megapixel resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080 – human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 megapixels.


Sign in / Sign up

Export Citation Format

Share Document