Deep Learning Models to Count Buildings in High-Resolution Overhead Images

Author(s):  
Sylvain Lobry ◽  
Devis Tuia
2021 ◽  
Author(s):  
Nithin G R ◽  
Nitish Kumar M ◽  
Venkateswaran Narasimhan ◽  
Rajanikanth Kakani ◽  
Ujjwal Gupta ◽  
...  

Pansharpening is the task of creating a High-Resolution Multi-Spectral Image (HRMS) by extracting and infusing pixel details from the High-Resolution Panchromatic Image into the Low-Resolution Multi-Spectral (LRMS). With the boom in the amount of satellite image data, researchers have replaced traditional approaches with deep learning models. However, existing deep learning models are not built to capture intricate pixel-level relationships. Motivated by the recent success of self-attention mechanisms in computer vision tasks, we propose Pansformers, a transformer-based self-attention architecture, that computes band-wise attention. A further improvement is proposed in the attention network by introducing a Multi-Patch Attention mechanism, which operates on non-overlapping, local patches of the image. Our model is successful in infusing relevant local details from the Panchromatic image while preserving the spectral integrity of the MS image. We show that our Pansformer model significantly improves the performance metrics and the output image quality on imagery from two satellite distributions IKONOS and LANDSAT-8.


2020 ◽  
Vol 6 (11) ◽  
pp. 125 ◽  
Author(s):  
Albert Comelli ◽  
Claudia Coronnello ◽  
Navdeep Dahiya ◽  
Viviana Benfante ◽  
Stefano Palmucci ◽  
...  

Background: The aim of this work is to identify an automatic, accurate, and fast deep learning segmentation approach, applied to the parenchyma, using a very small dataset of high-resolution computed tomography images of patients with idiopathic pulmonary fibrosis. In this way, we aim to enhance the methodology performed by healthcare operators in radiomics studies where operator-independent segmentation methods must be used to correctly identify the target and, consequently, the texture-based prediction model. Methods: Two deep learning models were investigated: (i) U-Net, already used in many biomedical image segmentation tasks, and (ii) E-Net, used for image segmentation tasks in self-driving cars, where hardware availability is limited and accurate segmentation is critical for user safety. Our small image dataset is composed of 42 studies of patients with idiopathic pulmonary fibrosis, of which only 32 were used for the training phase. We compared the performance of the two models in terms of the similarity of their segmentation outcome with the gold standard and in terms of their resources’ requirements. Results: E-Net can be used to obtain accurate (dice similarity coefficient = 95.90%), fast (20.32 s), and clinically acceptable segmentation of the lung region. Conclusions: We demonstrated that deep learning models can be efficiently applied to rapidly segment and quantify the parenchyma of patients with pulmonary fibrosis, without any radiologist supervision, in order to produce user-independent results.


2021 ◽  
Vol 13 (16) ◽  
pp. 3087
Author(s):  
Seonkyeong Seong ◽  
Jaewan Choi

In this study, building extraction in aerial images was performed using csAG-HRNet by applying HRNet-v2 in combination with channel and spatial attention gates. HRNet-v2 consists of transition and fusion processes based on subnetworks according to various resolutions. The channel and spatial attention gates were applied in the network to efficiently learn important features. A channel attention gate assigns weights in accordance with the importance of each channel, and a spatial attention gate assigns weights in accordance with the importance of each pixel position for the entire channel. In csAG-HRNet, csAG modules consisting of a channel attention gate and a spatial attention gate were applied to each subnetwork of stage and fusion modules in the HRNet-v2 network. In experiments using two datasets, it was confirmed that csAG-HRNet could minimize false detections based on the shapes of large buildings and small nonbuilding objects compared to existing deep learning models.


2021 ◽  
Author(s):  
Nithin G R ◽  
Nitish Kumar M ◽  
Venkateswaran Narasimhan ◽  
Rajanikanth Kakani ◽  
Ujjwal Gupta ◽  
...  

Pansharpening is the task of creating a High-Resolution Multi-Spectral Image (HRMS) by extracting and infusing pixel details from the High-Resolution Panchromatic Image into the Low-Resolution Multi-Spectral (LRMS). With the boom in the amount of satellite image data, researchers have replaced traditional approaches with deep learning models. However, existing deep learning models are not built to capture intricate pixel-level relationships. Motivated by the recent success of self-attention mechanisms in computer vision tasks, we propose Pansformers, a transformer-based self-attention architecture, that computes band-wise attention. A further improvement is proposed in the attention network by introducing a Multi-Patch Attention mechanism, which operates on non-overlapping, local patches of the image. Our model is successful in infusing relevant local details from the Panchromatic image while preserving the spectral integrity of the MS image. We show that our Pansformer model significantly improves the performance metrics and the output image quality on imagery from two satellite distributions IKONOS and LANDSAT-8.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3717 ◽  
Author(s):  
Pengbin Zhang ◽  
Yinghai Ke ◽  
Zhenxin Zhang ◽  
Mingli Wang ◽  
Peng Li ◽  
...  

Urban land cover and land use mapping plays an important role in urban planning and management. In this paper, novel multi-scale deep learning models, namely ASPP-Unet and ResASPP-Unet are proposed for urban land cover classification based on very high resolution (VHR) satellite imagery. The proposed ASPP-Unet model consists of a contracting path which extracts the high-level features, and an expansive path, which up-samples the features to create a high-resolution output. The atrous spatial pyramid pooling (ASPP) technique is utilized in the bottom layer in order to incorporate multi-scale deep features into a discriminative feature. The ResASPP-Unet model further improves the architecture by replacing each layer with residual unit. The models were trained and tested based on WorldView-2 (WV2) and WorldView-3 (WV3) imageries over the city of Beijing. Model parameters including layer depth and the number of initial feature maps (IFMs) as well as the input image bands were evaluated in terms of their impact on the model performances. It is shown that the ResASPP-Unet model with 11 layers and 64 IFMs based on 8-band WV2 imagery produced the highest classification accuracy (87.1% for WV2 imagery and 84.0% for WV3 imagery). The ASPP-Unet model with the same parameter setting produced slightly lower accuracy, with overall accuracy of 85.2% for WV2 imagery and 83.2% for WV3 imagery. Overall, the proposed models outperformed the state-of-the-art models, e.g., U-Net, convolutional neural network (CNN) and Support Vector Machine (SVM) model over both WV2 and WV3 images, and yielded robust and efficient urban land cover classification results.


2021 ◽  
Vol 13 (18) ◽  
pp. 3630
Author(s):  
Ziming Li ◽  
Qinchuan Xin ◽  
Ying Sun ◽  
Mengying Cao

Accurate building footprint polygons provide essential data for a wide range of urban applications. While deep learning models have been proposed to extract pixel-based building areas from remote sensing imagery, the direct vectorization of pixel-based building maps often leads to building footprint polygons with irregular shapes that are inconsistent with real building boundaries, making it difficult to use them in geospatial analysis. In this study, we proposed a novel deep learning-based framework for automated extraction of building footprint polygons (DLEBFP) from very high-resolution aerial imagery by combining deep learning models for different tasks. Our approach uses the U-Net, Cascade R-CNN, and Cascade CNN deep learning models to obtain building segmentation maps, building bounding boxes, and building corners, respectively, from very high-resolution remote sensing images. We used Delaunay triangulation to construct building footprint polygons based on the detected building corners with the constraints of building bounding boxes and building segmentation maps. Experiments on the Wuhan University building dataset and ISPRS Vaihingen dataset indicate that DLEBFP can perform well in extracting high-quality building footprint polygons. Compared with the other semantic segmentation models and the vector map generalization method, DLEBFP is able to achieve comparable mapping accuracies with semantic segmentation models on a pixel basis and generate building footprint polygons with concise edges and vertices with regular shapes that are close to the reference data. The promising performance indicates that our method has the potential to extract accurate building footprint polygons from remote sensing images for applications in geospatial analysis.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


Sign in / Sign up

Export Citation Format

Share Document