An efficient ARP for large-scale IEEE 802.11s-based Smart Grid networks

Author(s):  
Nico Saputro ◽  
Kemal Akkaya
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mahdi Saadatmand ◽  
Gevork B. Gharehpetian ◽  
Pierluigi Siano ◽  
Hassan Haes Alhelou
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 991
Author(s):  
Peidong Zhu ◽  
Peng Xun ◽  
Yifan Hu ◽  
Yinqiao Xiong

A large-scale Cyber-Physical System (CPS) such as a smart grid usually provides service to a vast number of users as a public utility. Security is one of the most vital aspects in such critical infrastructures. The existing CPS security usually considers the attack from the information domain to the physical domain, such as injecting false data to damage sensing. Social Collective Attack on CPS (SCAC) is proposed as a new kind of attack that intrudes into the social domain and manipulates the collective behavior of social users to disrupt the physical subsystem. To provide a systematic description framework for such threats, we extend MITRE ATT&CK, the most used cyber adversary behavior modeling framework, to cover social, cyber, and physical domains. We discuss how the disinformation may be constructed and eventually leads to physical system malfunction through the social-cyber-physical interfaces, and we analyze how the adversaries launch disinformation attacks to better manipulate collective behavior. Finally, simulation analysis of SCAC in a smart grid is provided to demonstrate the possibility of such an attack.


2021 ◽  
Vol 13 (5) ◽  
pp. 2549
Author(s):  
Shahid Mahmood ◽  
Moneeb Gohar ◽  
Jin-Ghoo Choi ◽  
Seok-Joo Koh ◽  
Hani Alquhayz ◽  
...  

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.


2014 ◽  
Vol 47 (3) ◽  
pp. 1879-1885 ◽  
Author(s):  
Samira Rahnama ◽  
S. Ehsan Shafiei ◽  
Jakob Stoustrup ◽  
Henrik Rasmussen ◽  
Jan Bendtsen
Keyword(s):  

2016 ◽  
Vol 13 (10) ◽  
pp. 119-136 ◽  
Author(s):  
Yan Wang ◽  
Qingxu Deng ◽  
Genghao Liu ◽  
Xiuping Hao ◽  
Baoyan Song

Sign in / Sign up

Export Citation Format

Share Document