An energy-efficient query based on variable region for large-scale smart grid

2016 ◽  
Vol 13 (10) ◽  
pp. 119-136 ◽  
Author(s):  
Yan Wang ◽  
Qingxu Deng ◽  
Genghao Liu ◽  
Xiuping Hao ◽  
Baoyan Song
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Mahdi Saadatmand ◽  
Gevork B. Gharehpetian ◽  
Pierluigi Siano ◽  
Hassan Haes Alhelou
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 991
Author(s):  
Peidong Zhu ◽  
Peng Xun ◽  
Yifan Hu ◽  
Yinqiao Xiong

A large-scale Cyber-Physical System (CPS) such as a smart grid usually provides service to a vast number of users as a public utility. Security is one of the most vital aspects in such critical infrastructures. The existing CPS security usually considers the attack from the information domain to the physical domain, such as injecting false data to damage sensing. Social Collective Attack on CPS (SCAC) is proposed as a new kind of attack that intrudes into the social domain and manipulates the collective behavior of social users to disrupt the physical subsystem. To provide a systematic description framework for such threats, we extend MITRE ATT&CK, the most used cyber adversary behavior modeling framework, to cover social, cyber, and physical domains. We discuss how the disinformation may be constructed and eventually leads to physical system malfunction through the social-cyber-physical interfaces, and we analyze how the adversaries launch disinformation attacks to better manipulate collective behavior. Finally, simulation analysis of SCAC in a smart grid is provided to demonstrate the possibility of such an attack.


Author(s):  
Liping Zhang ◽  
Yue Zhu ◽  
Wei Ren ◽  
Yinghan Wang ◽  
Kim-Kwang Raymond Choo ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2549
Author(s):  
Shahid Mahmood ◽  
Moneeb Gohar ◽  
Jin-Ghoo Choi ◽  
Seok-Joo Koh ◽  
Hani Alquhayz ◽  
...  

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 461
Author(s):  
Yongbin Yim ◽  
Euisin Lee ◽  
Seungmin Oh

Recently, the demand for monitoring a certain object covering large and dynamic scopes such as wildfires, glaciers, and radioactive contaminations, called large-scale fluid objects (LFOs), is coming to the fore due to disasters and catastrophes that lately happened. This article provides an analytic comparison of such LFOs and typical individual mobile objects (IMOs), namely animals, humans, vehicles, etc., to figure out inherent characteristics of LFOs. Since energy-efficient monitoring of IMOs has been intensively researched so far, but such inherent properties of LFOs hinder the direct adaptation of legacy technologies for IMOs, this article surveys technological evolution and advances of LFOs along with ones of IMOs. Based on the communication cost perspective correlated to energy efficiency, three technological phases, namely concentration, integration, and abbreviation, are defined in this article. By reviewing various methods and strategies employed by existing works with the three phases, this article concludes that LFO monitoring should achieve not only decoupling from node density and network structure but also trading off quantitative reduction against qualitative loss as architectural principles of energy-efficient communication to break through inherent properties of LFOs. Future research challenges related to this topic are also discussed.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4206
Author(s):  
Farhan Nawaz ◽  
Hemant Kumar ◽  
Syed Ali Hassan ◽  
Haejoon Jung

Enabled by the fifth-generation (5G) and beyond 5G communications, large-scale deployments of Internet-of-Things (IoT) networks are expected in various application fields to handle massive machine-type communication (mMTC) services. Device-to-device (D2D) communications can be an effective solution in massive IoT networks to overcome the inherent hardware limitations of small devices. In such D2D scenarios, given that a receiver can benefit from the signal-to-noise-ratio (SNR) advantage through diversity and array gains, cooperative transmission (CT) can be employed, so that multiple IoT nodes can create a virtual antenna array. In particular, Opportunistic Large Array (OLA), which is one type of CT technique, is known to provide fast, energy-efficient, and reliable broadcasting and unicasting without prior coordination, which can be exploited in future mMTC applications. However, OLA-based protocol design and operation are subject to network models to characterize the propagation behavior and evaluate the performance. Further, it has been shown through some experimental studies that the most widely-used model in prior studies on OLA is not accurate for networks with networks with low node density. Therefore, stochastic models using quasi-stationary Markov chain are introduced, which are more complex but more exact to estimate the key performance metrics of the OLA transmissions in practice. Considering the fact that such propagation models should be selected carefully depending on system parameters such as network topology and channel environments, we provide a comprehensive survey on the analytical models and framework of the OLA propagation in the literature, which is not available in the existing survey papers on OLA protocols. In addition, we introduce energy-efficient OLA techniques, which are of paramount importance in energy-limited IoT networks. Furthermore, we discuss future research directions to combine OLA with emerging technologies.


2014 ◽  
Vol 47 (3) ◽  
pp. 1879-1885 ◽  
Author(s):  
Samira Rahnama ◽  
S. Ehsan Shafiei ◽  
Jakob Stoustrup ◽  
Henrik Rasmussen ◽  
Jan Bendtsen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document