An Explicit Non-Malleable Extraction Scheme for Quantum Randomness Amplification With Two Untrusted Devices

2018 ◽  
Vol 22 (1) ◽  
pp. 85-88
Author(s):  
Mingfeng Xu ◽  
Wei Pan ◽  
Lianshan Yan ◽  
Bin Luo ◽  
Xihua Zou ◽  
...  
Author(s):  
I.M. Arbekov ◽  
Sergei N. Molotkov
Keyword(s):  

2019 ◽  
Vol 16 (4) ◽  
pp. 294-302 ◽  
Author(s):  
Shahid Akbar ◽  
Maqsood Hayat ◽  
Muhammad Kabir ◽  
Muhammad Iqbal

Antifreeze proteins (AFPs) perform distinguishable roles in maintaining homeostatic conditions of living organisms and protect their cell and body from freezing in extremely cold conditions. Owing to high diversity in protein sequences and structures, the discrimination of AFPs from non- AFPs through experimental approaches is expensive and lengthy. It is, therefore, vastly desirable to propose a computational intelligent and high throughput model that truly reflects AFPs quickly and accurately. In a sequel, a new predictor called “iAFP-gap-SMOTE” is proposed for the identification of AFPs. Protein sequences are expressed by adopting three numerical feature extraction schemes namely; Split Amino Acid Composition, G-gap di-peptide Composition and Reduce Amino Acid alphabet composition. Usually, classification hypothesis biased towards majority class in case of the imbalanced dataset. Oversampling technique Synthetic Minority Over-sampling Technique is employed in order to increase the instances of the lower class and control the biasness. 10-fold cross-validation test is applied to appraise the success rates of “iAFP-gap-SMOTE” model. After the empirical investigation, “iAFP-gap-SMOTE” model obtained 95.02% accuracy. The comparison suggested that the accuracy of” iAFP-gap-SMOTE” model is higher than that of the present techniques in the literature so far. It is greatly recommended that our proposed model “iAFP-gap-SMOTE” might be helpful for the research community and academia.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 581
Author(s):  
Stefan Heusler ◽  
Paul Schlummer ◽  
Malte S. Ubben

What is the origin of quantum randomness? Why does the deterministic, unitary time development in Hilbert space (the ‘4π-realm’) lead to a probabilistic behaviour of observables in space-time (the ‘2π-realm’)? We propose a simple topological model for quantum randomness. Following Kauffmann, we elaborate the mathematical structures that follow from a distinction(A,B) using group theory and topology. Crucially, the 2:1-mapping from SL(2,C) to the Lorentz group SO(3,1) turns out to be responsible for the stochastic nature of observables in quantum physics, as this 2:1-mapping breaks down during interactions. Entanglement leads to a change of topology, such that a distinction between A and B becomes impossible. In this sense, entanglement is the counterpart of a distinction (A,B). While the mathematical formalism involved in our argument based on virtual Dehn twists and torus splitting is non-trivial, the resulting haptic model is so simple that we think it might be suitable for undergraduate courses and maybe even for High school classes.


2004 ◽  
Vol 98 (1-2) ◽  
pp. 289-294 ◽  
Author(s):  
L.F. Ramírez-Verduzco ◽  
E. Torres-García ◽  
R. Gómez-Quintana ◽  
V. González-Peña ◽  
F. Murrieta-Guevara

Sign in / Sign up

Export Citation Format

Share Document