Optical pump-probe measurements of the latency of silicon CMOS optical interconnects

2002 ◽  
Vol 14 (8) ◽  
pp. 1214-1216 ◽  
Author(s):  
G.A. Keeler ◽  
D. Agarwal ◽  
C. Debaes ◽  
B.E. Nelson ◽  
N.C. Helman ◽  
...  
2003 ◽  
Vol 770 ◽  
Author(s):  
Nathanael Smith ◽  
Max J. Lederer ◽  
Marek Samoc ◽  
Barry Luther-Davies ◽  
Robert G. Elliman

AbstractOptical pump-probe measurements were performed on planar slab waveguides containing silicon nanocrystals in an attempt to measure optical gain from photo-excited silicon nanocrystals. Two experiments were performed, one with a continuous-wave probe beam and a pulsed pump beam, giving a time resolution of approximately 25 ns, and the other with a pulsed pump and probe beam, giving a time resolution of approximately 10 ps. In both cases the intensity of the probe beam was found to be attenuated by the pump beam, with the attenuation increasing monotonically with increasing pump power. Time-resolved measurements using the first experimental arrangement showed that the probe signal recovered its initial intensity on a time scale of 45-70 μs, a value comparable to the exciton lifetime in Si nanocrystals. These data are shown to be consistent with an induced absorption process such as confined carrier absorption. No evidence for optical gain was observed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1994
Author(s):  
Han Li ◽  
Yating Ma ◽  
Zhongjie Xu ◽  
Xiang’ai Cheng ◽  
Tian Jiang

Fundamental researches and explorations based on transition metal dichalcogenides (TMDCs) mainly focus on their monolayer counterparts, where optical densities are limited owing to the atomic monolayer thickness. Photoluminescence (PL) yield in bilayer TMDCs is much suppressed owing to indirect-bandgap properties. Here, optical properties are explored in artificially twisted bilayers of molybdenum disulfide (MoS2). Anomalous interlayer coupling and resultant giant PL enhancement are firstly observed in MoS2 bilayers, related to the suspension of the top layer material and independent of twisted angle. Moreover, carrier dynamics in MoS2 bilayers with anomalous interlayer coupling are revealed with pump-probe measurements, and the secondary rising behavior in pump-probe signal of B-exciton resonance, originating from valley depolarization of A-exciton, is firstly reported and discussed in this work. These results lay the groundwork for future advancement and applications beyond TMDCs monolayers.


1984 ◽  
Vol 9 (8) ◽  
pp. 359 ◽  
Author(s):  
T. F. Heinz ◽  
K. B. Eisenthal ◽  
S. L. Palfrey

2008 ◽  
Vol 1 ◽  
pp. 121301 ◽  
Author(s):  
Shigemi Mizukami ◽  
Hiroyuki Abe ◽  
Daisuke Watanabe ◽  
Mikihiko Oogane ◽  
Yasuo Ando ◽  
...  

Author(s):  
Д.И Хусяинов ◽  
А.М. Буряков ◽  
В.Р. Билык ◽  
Е.Д. Мишина ◽  
Д.С. Пономарев ◽  
...  
Keyword(s):  

Методами оптического зондирования при фемтосекундной лазерной накачке (optical pump-probe) и терагерцевой спектроскопии во временной области исследовано влияние эпитаксиальных напряжений на динамику неравновесных носителей заряда, а также спектр терагерцевого излучения в пленках InyGa1-yAs. Продемонстрировано снижение времени жизни неравновесных носителей заряда и увеличение ширины спектра терагерцевого излучения для пленки InyGa1-yAs с большим механическим напряжением. DOI: 10.21883/PJTF.2017.22.45260.16958


Author(s):  
Joshua Alper ◽  
Aaron Schmidt ◽  
Kimberly Hamad-Schifferli

To facilitate analysis of nanoscale heat transfer in nanoparticle systems the thermal properties of ligand layers must be understood. To this end, we use an optical pump-probe technique to study the thermal transport across ligands on gold nanorods and into the solvent. We find that varying properties of the ligand can have large impacts on the thermal decay of a nanorod after exposure to a laser pulse. By raising the concentration of free CTAB from 1 mM and 10 mM in solutions, the CTAB layer’s effective thermal interface conductance increases three fold. The transition occurs near the CTAB critical micelle concentration. Similar results are found for other ligand layers.


Sign in / Sign up

Export Citation Format

Share Document