pump beam
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 44)

H-INDEX

19
(FIVE YEARS 3)

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1580
Author(s):  
Yi-Hong Shih ◽  
Harry Miyosi Silalahi ◽  
Ting-I Tsai ◽  
Yi-Chen Chen ◽  
Jou-Yu Su ◽  
...  

A terahertz metasurface that is imbedded into a dye-doped liquid crystal (DDLC) cell is fabricated in this work. After the metasurface-imbedded DDLC cell is irradiated with a linearly polarized pump beam, the irradiated cell is measured with a terahertz spectrometer. The irradiation of the pump beam causes the adsorption of the dye on one of the substrates of the cell, scattering incident terahertz waves and decreasing the transmittances of the terahertz metasurface at all the frequencies of its resonance spectrum. In addition, these transmittances decrease with an increase in the irradiation times of the pump beam. The adsorbed dye molecules are erased from the substrate after the cell is heated by a hot plate. The cell has similar spectra before the irradiation of the pump beam and after the heating of the hot plate. The aforementioned results reveal that the metasurface-imbedded DDLC cell is an optically tunable and thermally erasable terahertz intensity modulator. Therefore, this cell has the potential in developing intensity attenuators for terahertz imaging, frequency isolators for terahertz telecommunication, and spatial light modulators for terahertz information encryption and decryption.


2021 ◽  
Author(s):  
Unai Arregui Leon ◽  
Davide Rocco ◽  
Luca Carletti ◽  
Marco Peccianti ◽  
Stefano Maci ◽  
...  

Abstract The THz spectrum (spanning from 0.3 THz to 30 THz) offers the potential of a plethora of applications, ranging from the imaging through non transparent media to wireless-over-fiber communications and THz-photonics. The latter framework would greatly benefit from the development of optical-to-THz wavelength converters. Exploiting Difference Frequency Generation in a nonlinear all dielectric nanoantenna, we propose a compact solution to this problem. By means of a near-Infrared pump beam (at ω1), the information signal in the optical domain (at ω2) is converted to the THz band (at ω3 = ω2 − ω1). The approach is completely transparent with respect to the modulation format, and can be easily integrated in a metasurface platform for simultaneous frequency and spatial moulding of THz beams.


2021 ◽  
Author(s):  
Joselito E. Muldera ◽  
Jessica Pauline C. Afalla ◽  
Takashi Furuya ◽  
Hideaki Kitahara ◽  
Elmer S. Estacio ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1116
Author(s):  
Dingwang Yu ◽  
Yanfei Dong ◽  
Youde Ruan ◽  
Guochao Li ◽  
Gaosheng Li ◽  
...  

In this paper, a photo-excited switchable terahertz metamaterial (MM) polarization converter/absorber has been presented. The switchable structure comprises an orthogonal double split-ring resonator (ODSRR) and a metallic ground, separated by a dielectric spacer. The gaps of ODSRR are filled with semiconductor photoconductive silicon (Si), whose conductivity can be dynamically tuned by the incident pump beam with different power. From the simulated results, it can be observed that the proposed structure implements a wide polarization-conversion band in 2.01–2.56 THz with the conversion ratio of more than 90% and no pump beam power incident illuminating the structure, whereas two absorption peaks operate at 1.98 THz and 3.24 THz with the absorption rates of 70.5% and 94.2%, respectively, in the case of the maximum pump power. Equivalent circuit models are constructed for absorption states to provide physical insight into their operation. Meanwhile, the surface current distributions are also illustrated to explain the working principle. The simulated results show that this design has the advantage of the switchable performance afforded by semiconductor photoconductive Si, creating a path towards THz imaging, active switcher, etc.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1100
Author(s):  
Yi-Hong Shih ◽  
Xin-Yu Lin ◽  
Harry Miyosi Silalahi ◽  
Chia-Rong Lee ◽  
Chia-Yi Huang

An optically tunable terahertz filter was fabricated using a metasurface-imbedded liquid crystal (LC) cell with photoalignment layers in this work. The LC director in the cell is aligned by a pump beam and makes angles θ of 0, 30, 60 and 90° with respect to the gaps of the split-ring resonators (SRRs) of the metasurface under various polarized directions of the pump beam. Experimental results display that the resonance frequency of the metasurface in the cell increases with an increase in θ, and the cell has a frequency tuning region of 15 GHz. Simulated results reveal that the increase in the resonance frequency arises from the birefringence of the LC, and the LC has a birefringence of 0.13 in the terahertz region. The resonance frequency of the metasurface is shifted using the pump beam, so the metasurface-imbedded LC cell with the photoalignment layers is an optically tunable terahertz filter. The optically tunable terahertz filter is promising for applications in terahertz telecommunication, biosensing and terahertz imaging.


2021 ◽  
Vol 11 (16) ◽  
pp. 7219
Author(s):  
Jeongyoun Jeong ◽  
Sanglok Lee ◽  
Sungi Hwang ◽  
Jaeuk Baek ◽  
Heung-Ryoul Noh ◽  
...  

We experimentally and theoretically investigated the optimal condition of polarization spectroscopy for frequency stabilization on various pump beam intensities and vapor cell temperatures for the D2 closed transition line of 87Rb atoms. We compared the experimental results, such as the amplitude, width, and slope, of the polarization spectroscopy signal with the theoretical results obtained from the numerical calculation of temporal density matrix equations. Based on the results, we found the optimal parameters, such as the pump beam intensity and vapor cell temperature, for polarization spectroscopy. The theoretically expected optimal parameters were, qualitatively, in good agreement with the experimental results.


2021 ◽  
Vol 27 (S1) ◽  
pp. 3416-3418
Author(s):  
Jialiang Chen ◽  
Chris Leighton ◽  
David Flannigan

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vaida Marčiulionytė ◽  
Vytautas Jukna ◽  
Gintaras Tamošauskas ◽  
Audrius Dubietis

AbstractWe compare supercontinuum generation in $$\hbox {CaF}_2$$ CaF 2 crystal under tight and loose focusing of 150 fs, 515 nm second harmonic pulses from an amplified Yb:KGW laser at a repetition rate of 10 kHz. It is demonstrated that supercontinuum generation geometry applying loose focusing ($$\hbox {NA}=0.004$$ NA = 0.004 ) of the pump beam into a long (25 mm) $$\hbox {CaF}_2$$ CaF 2 sample is advantageous in terms of supercontinuum spectral extent and durability of damage-free operation of the nonlinear material as compared to a commonly used supercontinuum generation setup which employs tight focusing ($$\hbox {NA}=0.012$$ NA = 0.012 ) into a short (5 mm) sample and to setup which uses tight focusing into a long (25 mm) sample. More specifically, loose focusing into a long sample showed remarkably longer (20 min) damage-free operation of the nonlinear material, which was not translated with respect of the pump beam, while in tight focusing condition the sample is damaged just within 2 min of operation, leading to a complete extinction of the supercontinuum spectrum. The evolution of optical degradation of the nonlinear material in time and its impact to supercontinuum spectrum is studied in terms of filament-induced luminescence due to self-trapped exciton emission and light scattering at the pump wavelength indicating the onset of optical damage. Our findings are supported by the numerical simulations which compare relevant parameters related to filament propagation in tight and loose focusing conditions.


2021 ◽  
pp. 104506
Author(s):  
Preeti Sharma ◽  
Nishant Kumar Pathak ◽  
Bhaskar Kanseri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document