Energy-Perceptive MAC for Wireless Power and Information Transfer

2019 ◽  
Vol 8 (2) ◽  
pp. 644-647 ◽  
Author(s):  
Youngil Cho ◽  
Yunmin Kim ◽  
Tae-Jin Lee
2021 ◽  
Vol 13 (13) ◽  
pp. 2611
Author(s):  
Huaiyu Qin ◽  
Buhui Zhao ◽  
Leijun Xu ◽  
Xue Bai

Power consumption in wireless sensor networks is high, and the lifetime of a battery has become a bottleneck, restricting network performance. Wireless power transfer with a ground mobile charger is vulnerable to interference from the terrain and other factors, and hence it is difficult to deploy in practice. Accordingly, a novel paradigm is adopted where a multi-UAV (unmanned aerial vehicle) with batteries can transfer power and information to SDs (sensor devices) in a large-scale sensor network. However, there are discrete events, continuous process, time delay, and decisions in such a complicated system. From the perspective of a hybrid system, a hybrid colored cyber Petri net system is proposed here to depict and analyze this problem. Furthermore, the energy utilization rate and information collection time delay are conflict with each other; therefore, UAV-aided wireless power and information transfer is formulated as a multi-objective optimization problem. For this reason, the MAC-NSGA II (multiple ant colony-nondominated sorting genetic algorithm II) is proposed in this work. Firstly, the optimal trajectory of multiple UAVs was obtained, and on this basis, the above two objectives were optimized simultaneously. Large-scale simulation results show that the proposed algorithm is superior to NSGA II and MOEA/D in terms of energy efficiency and information collection delay.


2020 ◽  
Vol 20 (4) ◽  
pp. 241-247
Author(s):  
Gunyoung Kim ◽  
Bomson Lee

Inductively coupled resonant wireless power transfer (WPT) systems can be used as a wireless power and information transfer (WPIT) system by properly adding the function of varying Rx loads. A new metric for the figure of merit for information transfer from Rx to Tx is proposed as the ratio of Tx input impedances for the Rx shorted and optimum loads to systematically assess the information transfer. While most of WPT and near-field communication (NFC) devices have been adopted for very short distances between Tx and Rx, this work shows that the WPIT systems using inductively coupled resonant structures with high Q-factor coils enable much longer working distances with the best power transfer efficiency and information transfer capability. Several design examples show that the newly proposed figure of merit for information transfer is an essential metric in the understanding and design of WPIT systems. The theory is validated with circuit and electromagnetic simulations for various system configurations.


These days wireless power transfer is the widely used technology to transmit power and information simultaneously. In this paper, the magnetic induction principle is used to transfer power and information simultaneously through a single winding arrangement. It is shown that a 7W LED lamp can be illuminated between a distance of about 5mm. Magnetic induction principle can be applied to a short-range power and information transfer only. This paper discusses the underwater LED light luminaire transmitter and receiver design components, along with it shows the mode switching of LED. The power transfer efficiency is about 65% when the transmitter and receiver are placed in-line and power efficiency decreases with the displacement of the lamp to either side.


Author(s):  
Yan Zhou ◽  
Chongyuan Ma ◽  
Zijian Zhang ◽  
Liang Huang ◽  
Patrick Aiguo Hu

Sign in / Sign up

Export Citation Format

Share Document