Research on the bearing capacity of recycled aggregate concrete-filled circle steel tube column under axial compression loading

Author(s):  
Zong-ping Chen ◽  
Feng Liu ◽  
Hua-hai Zheng ◽  
Jian-yang Xue
2021 ◽  
Vol 8 ◽  
Author(s):  
Yicen Liu ◽  
Fei Lyu ◽  
Faxing Ding ◽  
En Wang ◽  
Yunlong Xu ◽  
...  

The mechanical behaviors of recycled aggregate concrete (RAC) are upgraded by outer steel tube confinement, and the performance of recycled aggregate concrete-filled steel tubular (RACFST) columns is similar to that of the traditional concrete-filled steel tube (CFST) columns. The purpose of this study is to investigate the behaviors of recycled aggregate concrete-filled rectangular steel tubular (RACFRST) stub columns under axial loading. Three-dimensional finite element (FE) models were established, which utilized a triaxial plastic-damage constitutive RAC model considering the replacement ratio of recycled aggregates. The finite element analysis results indicated that the lessened ultimate bearing capacity of RACFRST stub columns compared with their traditional concrete infilled counterparts was mainly due to the weakened confinement effect and confinement efficiency. A simplified formula of the bearing capacity of concentrically loaded RACFRST stub columns was proposed. The cross-sectional stress nephogram was reasonably simplified by the limited state of infilled concrete. The basics of proposed formula were the equilibrium condition and the superposition method. Finally, the formula for the bearing capacity of RACFRST stub columns was evaluated by comparing its accuracy and feasibility to some design formulae proposed by specialists and some design codes of different regions.


2015 ◽  
Vol 744-746 ◽  
pp. 96-99
Author(s):  
Jiong Feng Liang ◽  
Ze Ping Yang ◽  
Ming Hua Hu

In order to further promote the use of recycled aggregate concrete in practice, axial compression tests were carried out for 7 CFRP circular steel tubular confined recycled aggregate concrete columns. The influence of the replace rate of recycled aggregate concrete, the wrapping method on axial compression behavior of CFRP circular steel tubular confined recycled aggregate concrete columns were analyzed. Based on the results of the tests, with the replace rate of recycled aggregate concrete increasing, the specimens have an decreasing trend in the load bearing capacity. The whole CFRP wrapping circular steel tubular confined recycled aggregate concrete columns have higher load bearing capacity than the three stripe wrapping ones.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xianggang Zhang ◽  
Jianhui Yang ◽  
Yaozong Zhang ◽  
Xiang Gao

To study the seismic strength and stiffness for recycled aggregate concrete-filled steel tube (RACFST) frame, two-frame specimens made up of RACFST column and reinforced recycled aggregate concrete (RAC) beam were used for a seismic test under reversed low-cycle loading. The failure mechanism, hysteresis curve, strength attenuation, and stiffness degradation were determined for the specimens. The design methods for the story shear bearing capacity and stiffness for the single-layer single-span RACFST frame were discussed. It is shown that the seismic design requirements including “strong column weak beam” and “strong shear weak bending” can be met. The hysteresis curves are symmetric and the strength attenuation and rigidity degeneration change significantly, then change a little, and then significantly again under the same displacement. It is possible that the methods including elastic bending moment at the column end, plastic hinge at the column end, and plastic hinge at the column bottom can all be applied to the design calculation of the story shear bearing capacity for the single-layer single-span RACFST frame. The method adopted in this paper can be used to estimate the original elastic layer stiffness of the RACFST frame.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3140 ◽  
Author(s):  
Yong Yu ◽  
Bo Wu

In the past decade, directly reusing large pieces of coarsely crushed concrete (referred to as demolished concrete lumps or DCLs) with fresh concrete in new construction was demonstrated as an efficient technique for the recycling of waste concrete. Previous studies investigated the mechanical properties of recycled lump concrete (RLC) containing different sizes of DCLs; however, for actual application of this kind of concrete, little information is known about the influence of the spatial locations of DCLs and coarse aggregates on the concrete strength. Moreover, the mechanical responses of such a concrete containing various shapes of DCLs are also not well illustrated. To add knowledge related to these topics, two-dimensional mesoscale simulations of RLC containing DCLs under axial compression were performed using the discrete element method. The main variables of interest were the relative strength of the new and old concrete, the distribution of the lumps and other coarse aggregates, and the shape of the lumps. In addition, the differences in compression behavior between RLC and recycled aggregate concrete were also predicted. The numerical results indicate that the influence tendency of the spatial locations of DCLs and coarse aggregate pieces on the compressive stress–strain curves for RLC is similar to that of the locations of coarse aggregates for ordinary concrete. The strength variability of RLC is generally higher than that of ordinary concrete, regardless of the relative strength of the new and old concrete included; however, variability has no monotonic trend with an increase in the lump replacement ratio. The mechanical properties of RLC in compression are little influenced by the geometric shape of DCLs as long as the ratio of the length of their long axis to short axis is smaller than 2.0. The compressive strength and elastic modulus of RLC are always superior to those of recycled aggregate concrete designed with a conventional mixing method.


Sign in / Sign up

Export Citation Format

Share Document